Effects of Light Intensity and Water Stress on Growth, Photosynthetic Characteristics and Plant Survival of Cistus heterophyllus Desf. Subsp. carthaginensis (Pau) M. B. Crespo & Mateo

Author:

Gómez-Bellot María José1ORCID,Sánchez-Blanco María Jesús1,Lorente Beatriz1ORCID,Vicente-Colomer María José2,Ortuño María Fernanda1ORCID

Affiliation:

1. Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), P.O. Box 164, 30100 Espinardo-Murcia, Murcia, Spain

2. Department of Agricultural Engineering, UPCT—Technical University of Cartagena, 10, 30203 Cartagena, Bolivar, Spain

Abstract

The objective of this study was to identify the physiological mechanisms used by Cistus heterophyllus Desf. Subsp. carthaginensis (Pau) M. B. Crespo & Mateo, a species in critical danger of extinction, to cope with two typical abiotic conditions. During the summer of 2021, plants were cultivated under a shade mesh that intercepted 50% of the incident solar radiation (SHADE) and in natural conditions (SUN). Three irrigation treatments were also applied: control, T1, moderate water deficit; T2, 60% of the control, severe deficit; and T3, 30% of the control. Therefore, there were six treatments (SUN-T1, SUN-T2, SUN-T3, SHADE-T1, SHADE-T2, SHADE-T3). Plants were more affected by solar radiation than by deficit irrigation. Although leaf water potential, stomatal conductance and root biomass decreased by up to 45%, 63% and 65%, respectively, as deficit irrigation increased, plants were able to develop a leaf osmotic adjustment and an improved intrinsic water-use efficiency to maintain their growth and survival rate. Shade conditions improved gas exchange, reduced leaf temperature and induced the synthesis of chlorophylls, regardless of the irrigation level imposed. This indicated that radiation was the most limiting factor in our experiment. Applying 50% of the radiation and a moderate water deficit would help to obtain a good plant development and high survival rate in future recovery and conservation programs for the species.

Funder

Comunidad Autónoma Región de Murcia

MCI-NextGenerationEU

Fundación Séneca-Región de Murcia

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3