The Composition and the Content of ∆-5 Sterols, Fatty Acids, and the Activity of Acyl-Lipid Desaturases in the Shoots of Ephedra monosperma, Introduced in the Botanical Garden of the Cryolithozone of Yakutia

Author:

Nokhsorov Vasiliy V.1ORCID,Dudareva Luybov V.2ORCID,Semenova Natalia V.2,Sofronova Valentina E.1

Affiliation:

1. Institute for Biological Problems of the Cryolithozone, Siberian Branch of Russian Academy of Sciences, 41 Lenina Av., 677000 Yakutsk, Russia

2. Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, 132 Lermontova Str., 664033 Irkutsk, Russia

Abstract

Evergreen plants in permafrost ecosystems survive unfavorable autumn cooling and extremely low winter temperatures by maintaining optimal physiological activity of tissue cell membranes. To some extent, these features are due to the properties of shoot lipids performing a number of functions during adaptation. Sterols (STs) play a key role in regulating the fluidity and permeability of plant membranes (phytosterols) with a wide structural diversity. The composition of neutral lipids, STs, and fatty acids (FAs) in shoots of the evergreen shrub Ephedra monosperma growing in the Botanical Garden cryolithozone was first studied with HPTLC-UV/Vis/FLD and GC-MS. Twenty FAs were found, from C14:0 to C23:0; they included mono-, di-, tri-, and tetraene FAs. The high content of β-sitosterol among other ∆-5 sterols and an increased amount of C18:2(∆9,12) linoleic acid in lipids composition during the autumn–winter period was found to play an important role in the adaptation of ephedra shoots to the autumn–winter period, providing the cell membrane with greater plasticity, fluidity, and flexibility. The important role of diene linoleic fatty acid C18:2(∆9,12) in ephedra shoot lipids in the processes of low-temperature adaptation was shown.

Funder

Russian Science Foundation

State Task of the Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3