Effect of Daily Light Integral on Cucumber Plug Seedlings in Artificial Light Plant Factory

Author:

Cui Jiawei,Song ShiweiORCID,Yu Jizhu,Liu Houcheng

Abstract

In a controlled environment, in an artificial light plant factory during early spring or midsummer, vegetable seedlings can be uniform, compact, and high quality. Appropriate light parameters can speed up the growth of seedlings and save on production costs. Two experiments were carried out in this study: (1) cucumber seedling growth under different daily light integrals (DLIs) (5.41–11.26 mol·m−2·d−1) and optimum DLI for seedling production were explored (experiment 1: Exp. 1); (2) under the same DLI selected by Exp. 1, the effects of different light intensities and photoperiods on cucumber seedlings were investigated (experiment 2: Exp. 2). The root biomass, root-to-shoot ratio, seedling index, and shoot dry matter rate increased as the DLI increased from 5.41 to 11.26 mol·m−2·d−1, while the shoot biomass and leaf area decreased in Exp. 1. The cucumber seedlings became more compact as DLI increased, but more flowers developed after transplanting when the DLI was 6.35 mol·m−2·d−1. Under the optimal DLI (6.35 mol·m−2·d−1), the optimal intensity was 110–125 μmol·m−2·s−1, and the optimal photoperiod was 14–16 h, in which plant biomass, shoot dry matter rate, seedling index, and photochemical efficiency were higher.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference51 articles.

1. Daily Light Integral: A Research Review and High-resolution Maps of the United States

2. Determining the minimum daily light integral for forcing of azalea (Rhododendron simsii)

3. Vegetative Growth and Inflorescence Emergence of Phalaenopsis ‘Mantefon’ as Affected by Photoperiod, Light Intensity, and Daily Light Integral;Lee,2018

4. Growth characteristics and flowering initiation of Phalaenopsis Queen Beer ‘Mantefon’ as affected by the daily light integral

5. Influence of light on germination and seedling status of Centipeda herba;Zhang;Seed,2016

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3