Self-Incompatibility of Camellia weiningensis Y.K. Li.

Author:

Gao Chao,Wei Hongli,Qiu Jie,Long Li,Yang Lu

Abstract

This study compared the pollen tube growth, fruit setting, and seed setting characteristics of Camellia weiningensis Y.K. Li. under self- and cross-pollination to identify its self-incompatibility characteristics and types. C. weiningensis pollen tube growth was observed by fluorescence and scanning electron microscopy, and a field experiment with manual pollination verified fruit and seed setting characteristics. Both self- and cross-pollinated pollen germinated from the stigma. At 72 h after cross-pollination, the pollen tube reached the style base, with tube growth showing a slow-fast-slow pattern. The tube growth speed was maximal, 343.36 μm·h−1, at 12–24 h after pollination. For self-pollination, the pollen did not germinate on the stigma 4 h before pollination. At 12–24 h after pollination, the growth rate was maximal at 263.36 μm·h−1. At 96 h, a small amount of pollen reached the style base and stagnated. The pollen tube end showed callose reactions, such as abnormal swelling, distortion, and brightness. In the field experiment, the fruit setting rate under cross-pollination was 68.5%, while that under self-pollination was 15.3%. When the fruit grew to maturity, the growth dynamics of the transverse and longitudinal diameters showed a “slow-fast-slow”, S-shaped curve. The number of aborted selfed and outcrossed seeds was 13.9 and 4.7, respectively. Thus, C. weiningensis showed self-incompatibility. The self-incompatibility reaction occurred at the style base and represented prezygotic self-incompatibility. The self-incompatibility of C. weiningensis is one of the main reasons for its low seed setting rate, which should be fully considered in cross breeding.

Funder

National Natural Science Foundation of China

Science and Technology Plan Project of Guizhou Province of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference48 articles.

1. When the genetic architecture matters: Evolutionary and ecological implications of self versus nonself recognition in plant self-incompatibility;Xavier;New Phytol.,2021

2. Analysis on the development and improvement of Zhejiang Safflower Camellia resources in Qingtian County;Chen;J. Agric. Catastrophol.,2021

3. The Effects of Self-incompatibility Control Substances On Yield and Fruit Growth Traits of Pear Pyrus communis L. Cultivar ‘Williams’

4. Incompatibility in Angiosperms;Nettancourt,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3