The True Identity of the “Second Pollen Morphology” of Camellia oleifera—Stomium Cells

Author:

Hu Yang,Gao Chao

Abstract

Previous studies on Camellia oleifera pollen morphology have indicated dual morphologies, defined as “dimorphism”. However, they were limited to morphological studies at the end of final development and did not elucidate the origin, structure, and function of the second pollen morphology (striate pollen). In this study, the differences between the two “pollen” types were compared by paraffin sections, scanning electron microscopy (SEM), fluorescence microscopy, and in vitro germination. The results clearly showed that the second pollen type was formed by stomium cells of the anther, which is responsible for anther dehiscence. The nucleus and vesicles of the stomium cell were specifically distributed during anther development, which may be related to the formation of the septum, pollen dispersal activity, and the increase in stomium cell count; at the microscopic level, the stomium cell mainly consisted of the cell wall, large vesicles, and nucleus. The large vesicles facilitate the rapid dehydration of stomium cells under suitable conditions for anther dehiscence. Furthermore, studies on other species of the genus Camellia have suggested that the second type of pollen morphology is pseudopollen, which is capable of partaking in deceptive pollination. The present study refuted this theory and suggested that the pseudopollen are stomium cells, whose structure relates to their function. These results provide the basis for further research on C. oleifera pollen physiology toward the improvement of pollination rates with agricultural practices or breeding interventions.

Funder

National Natural Science Foundation of China

Science and Technology Plan Project of Guizhou Province of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3