Characterization of Young Shoot Population, Yield, and Nitrogen Demands of Tea (Camellia sinensis L.) Harvested under Different Standards

Author:

Long LizhiORCID,Shi Yuanzhi,Ma Lifeng,Ruan JianyunORCID

Abstract

The quality of green tea is greatly influenced by the harvest standards for young shoots. The present field experiment was conducted to characterize the young shoot populations, yields, and nitrogen (N) demands of tea plants subjected to four different harvest standards, i.e., buds with one, two, or three young expanding leaves (referred to as B1L, B2L, and B3L, respectively) and a combination of B1L and B3L (B1L/B3L) throughout the year. Weight per shoot was closely related to the number of expanding leaves and was greater in B3L than B1L and B2L, and also greater in summer and autumn than in spring, whereas B1L revealed the greatest young shoot density and highest N concentration. Annual shoot yield and shoot N content were largest in B3L and decreased in the following order: B3L > B2L ≈ B1L/B3L > B1L. However, in the early spring the shoot density, yield, and shoot N content of B1L were much higher than those of B3L. The harvest of B3L significantly reduced the biomass of brown roots and its ratio against the above-ground biomass compared to other harvest standards, suggesting a decreased allocation of carbon to the root system due to seasonal removal. The N dilution curve (Nys = a × Yysb, where Nys is the shoot N content and Yys is the shoot yield) of spring tea differed markedly from those of summer and autumn teas, suggesting different coordination properties for shoot growth and N supply among the seasons. The annual harvest index (NHI) measured by 15N traces ranged between 0.18 and 0.23, indicating relatively low N allocation to young shoots, whereby large proportions (58.2–66.9% of the total 15N absorption) remained in the plant at the end of the experiment. In conclusion, the seasonal distribution of the shoot density, weight per shoot, yield, and N demands vary with harvest standards and highlight the importance of N precision management in tea production to be finely tuned to meet the changes in harvest season and requirements.

Funder

National Key Research and Development Project

Earmarked Fund for China Agriculture Research System

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3