Identification of Loci for Four Important Agronomic Traits in Loose-Curd Cauliflower Based on Genome-Wide Association Studies

Author:

Zhang Xiaoli1ORCID,Wen Zhenghua1,Jiang Hanmin1,Niu Guobao1,Liu Lili1,Yao Xingwei1,Sun Deling1,Shan Xiaozheng1

Affiliation:

1. State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agriculture Sciences, Tianjin 300192, China

Abstract

Cauliflower is a nutritious vegetable with inflorescences that are specialized to form the edible organs called curds. Uncovering key genes underlying important traits is crucial for the genetic improvement of this important crop. However, the genetic basis of many important agronomic traits, including curd performance and plant architecture in cauliflower, remains unclear. GWASs have proved to be powerful tools to study agronomic traits in many crops. To reveal the genetic basis of four important agronomic traits, namely, the main stem height (MSH), purplish curd (PC), external leaf wing (ELW) and weight of a single curd (WSC), we selected 220 core accessions of loose-curd cauliflower for resequencing, phenotypic investigation and GWAS. The approach revealed significant novel loci. We detected several significant associations: on C02 for MSH and PC, on C06 for ELW and on C01 for WSC. More interestingly, we identified a significant single-peak signal for the weight of a single curd (WSC), an important yield trait, and within this signal interval, we identified the BOB01G136670 gene with five SNPs encoding nonsynonymous mutations in the CDS region; these mutations resulted in two haplotypes with significant differences in curd weight. The weight of a single curd was significantly increased in the varieties with the BOB01G136670 Hap1 allele compared to those with BOB01G136670 Hap2. BOB01G136670 was highly conserved with the homologous genes that encode serine carboxypeptidase and belong to the S10 family in other species, including GS5, which functions as a positive regulator of grain size in rice, wheat and maize. Additionally, BOB01G136670 was highly expressed specifically at the curd enlargement stage, with low or even no expression at all in other tissues and stages, indicating that BOB01G136670 is a plausible candidate gene for WSC. Overall, this study identified genomic loci for four important agronomic traits that are relevant for accelerating biological breeding and the improvement of cauliflower varieties.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Tianjin

Innovative Research and Experimental Projects for Young Researchers of Tianjin Academy of Agricultural Science

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3