Affiliation:
1. State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agriculture Sciences, Tianjin 300192, China
Abstract
Cauliflower is a nutritious vegetable with inflorescences that are specialized to form the edible organs called curds. Uncovering key genes underlying important traits is crucial for the genetic improvement of this important crop. However, the genetic basis of many important agronomic traits, including curd performance and plant architecture in cauliflower, remains unclear. GWASs have proved to be powerful tools to study agronomic traits in many crops. To reveal the genetic basis of four important agronomic traits, namely, the main stem height (MSH), purplish curd (PC), external leaf wing (ELW) and weight of a single curd (WSC), we selected 220 core accessions of loose-curd cauliflower for resequencing, phenotypic investigation and GWAS. The approach revealed significant novel loci. We detected several significant associations: on C02 for MSH and PC, on C06 for ELW and on C01 for WSC. More interestingly, we identified a significant single-peak signal for the weight of a single curd (WSC), an important yield trait, and within this signal interval, we identified the BOB01G136670 gene with five SNPs encoding nonsynonymous mutations in the CDS region; these mutations resulted in two haplotypes with significant differences in curd weight. The weight of a single curd was significantly increased in the varieties with the BOB01G136670 Hap1 allele compared to those with BOB01G136670 Hap2. BOB01G136670 was highly conserved with the homologous genes that encode serine carboxypeptidase and belong to the S10 family in other species, including GS5, which functions as a positive regulator of grain size in rice, wheat and maize. Additionally, BOB01G136670 was highly expressed specifically at the curd enlargement stage, with low or even no expression at all in other tissues and stages, indicating that BOB01G136670 is a plausible candidate gene for WSC. Overall, this study identified genomic loci for four important agronomic traits that are relevant for accelerating biological breeding and the improvement of cauliflower varieties.
Funder
the National Natural Science Foundation of China
the Natural Science Foundation of Tianjin
Innovative Research and Experimental Projects for Young Researchers of Tianjin Academy of Agricultural Science
Subject
Horticulture,Plant Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献