Performance Evaluation of New Table Grape Varieties under High Light Intensity Conditions Based on the Photosynthetic and Chlorophyll Fluorescence Characteristics

Author:

He Yawen12,Yadav Vivek1ORCID,Bai Shijian3,Wu Jiuyun4,Zhou Xiaoming1,Zhang Wen1,Han Shouan1,Wang Min1,Zeng Bin2,Wu Xinyu1,Zhong Haixia1,Zhang Fuchun1

Affiliation:

1. The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

2. College of Horticulture, Xinjiang Agricultural University, Urumqi 830091, China

3. Research Institute of Grape and Melon Fruits in Xinjiang Uygur Autonomous Region, Turpan 838200, China

4. Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Science, Turpan 830000, China

Abstract

The evaluation of photosynthetic characteristics of plants is important for the success rate of germplasm introduction. To select grape varieties with higher adaptability and trait performance, this experiment is aimed at evaluating and comparing the photosynthetic indices, chlorophyll fluorescence parameters, photosynthetic pigment content, and leaf characteristics of five Chinese hybrid varieties. The results showed that under high light intensity stress, the leaf growth of ‘Ruidu Cuixia’ was most affected and its specific leaf weight was the lowest, while ‘Jing Hongbao’ had the highest chlorophyll content. The maximum net photosynthetic rate (Pnmax), maximum light quantum yield (Fv/Fm), and apparent quantum efficiency (AQE) were different among varieties. It was reported that the ‘Ruidu Zaohong’ variety had the highest Pnmax. ‘Ruidu Wuheyi’ was found to have the highest Fv/Fm, while the highest AQE was recorded for ‘Ruidu Cuixia’, with intercellular CO2 concentration (Ci) and stomatal conductance (gs) at 292.56 μmol·mol−1, 766.56 mmol·m−2·s−1, and 66.8 μmol·m−2·s−1, respectively. The indices of ABS/CSm, TRo/CSm, and DIo/CSm were significantly different among varieties, and these indices of ‘Ruidu Zaohong’ were the highest. Pn was positively correlated with Ci and Tr, gs were positively correlated with Fv and TRo/CSm. The specific leaf area was negatively correlated with Fv/Fm and ΦDIo. The results of the principal component analysis and TOPSIS comprehensive evaluation showed that ‘Jing Hongbao’ and ‘Ruidu Cuixia’ performed best. Overall, the measurement of the photosynthetic characteristics of the plants during the growing period provided valuable data for the varietal introduction strategies. The better photosynthetic performance of ‘Jing Hongbao’ and ‘Ruidu Cuixia’ indicates more adaptability to the long day, high light intensity, and the high-temperature climate of Xinjiang.

Funder

Agricultural Science and Technology Innovation long-term support project, Xinjiang Academy of Agricultural Sciences

Key research and development project of autonomous region

China Agriculture Research System of MOF and MARA

Xinjiang Uygur Autonomous Region Tianshan Talents Training Program-Young top-notch scientific and technological talents

Xinjiang Uygur Autonomous Region Innovation Environment Construction Special Project

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3