Comparison on the Nutrient Plunder Capacity of Orychophragmus violaceus and Brassica napus L. Based on Electrophysiological Information

Author:

Zhang Cheng,Su Yue,Wu YanyouORCID,Li Haitao,Zhou Ying,Xing Deke

Abstract

The nutrient metabolism, growth and development of plants are strongly affected by its nutrient plunder, and plants have different adaptive mechanisms to low-nutrient environments. The electrophysiological activities involve almost all life processes of plants. In this study, the active transport flow of nutrient (NAF) and nutrient plunder capacity (NPC) of plants were defined based on leaf intrinsic impedance (IZ), capacitive reactance (IXc), inductive reactance (IXL) and capacitance (IC) to evaluate the nutrient plunder capacity of plants for the first time. The results indicate that Orychophragmus violaceus had higher (p < 0.01) NPC and IC and lower (p < 0.01) IR, IXc, IXL and IZ as compared to Brassica napus L., which supports a superior ion affinity and that it could be better adapted to low-nutrient environments. UAF and NPC of plants exhibited good correlations with crude protein, crude ash and water content, and precisely revealed the plunder capacity and adaptive strategies of plants to nutrients. The present work highlights that O. violaceus had superior NPC and ion affinity compared with B. napus, and provided a novel, rapid, reliable method based on the plant’s electrophysiological information for real-time determination of the nutrient plunder capacity of plants.

Funder

Support Plan Projects of Science and Technology Department of Guizhou Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3