Productivity Enhancement of Cucumber (Cucumis sativus L.) through Optimized Use of Poultry Manure and Mineral Fertilizers under Greenhouse Cultivation

Author:

Sallam Basheer NomanORCID,Lu Tao,Yu Hongjun,Li Qiang,Sarfraz ZareenORCID,Iqbal Muhammad ShahidORCID,Khan Shumaila,Wang Heng,Liu Peng,Jiang Weijie

Abstract

Cucumber, a widely cultivated vegetable, is mostly grown under greenhouse conditions. In recent years, the overuse of inorganic fertilizers for higher yield attainment adversely has affected human health and the environment. Therefore, a greenhouse experiment was designed to evaluate the effects of different nutrient sources (poultry manure (PM) and mineral fertilizer (MF)) on productivity-enhancing parameters of cucumber via univariate and multivariate analyses. Amounts of PM and MF (NPK15:15:15) were added to coco-peat per cubic meter by weight/volume (w/v) ratios as follows: T1 (control), 60 kg PM; T2, 30 kg PM + 3 kg MF; T3, 30 kg PM + 5 kg MF, and T4, 30 kg PM + 7 kg MF. The univariate analysis performed on the collected data illustrated the significant enhancement in growth and productivity for the integrated use of PM and MF. Multivariate analyses (correlation, clustering, and Principal Component Analysis) validated the results of univariate analysis by differentiating treatments into two groups. The three treatments obtained a distinguished group from T1 (Control) and did not show significant differences among each other, with a maximum yield increase by T2 (74.6%). According to these results, T2 could improve cucumber productivity under greenhouse conditions. It can be taken as recommendations for better quality and yield enhancement in future improvement programs and cucumber-related farming communities.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference73 articles.

1. Starch glucose coating-induced postharvest shelf-life extension of cucumber

2. Comparative Proteomic Analysis of Cucumber Fruits Under Nitrogen Deficiency At the Fruiting Stage

3. Cucumber (Cucumis sativus L.);Sharma,2020

4. Food and Agriculture Organization of the United Nations;Crop. Prod. Data,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3