Colored Shading Nets Differentially Affect the Phytochemical Profile, Antioxidant Capacity, and Fruit Quality of Piquin Peppers (Capsicum annuum L. var. glabriusculum)

Author:

Jiménez-Viveros Yamir1ORCID,Valiente-Banuet Juan Ignacio1ORCID

Affiliation:

1. Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Epigmenio González 500, San Pablo, Santiago de Querétaro 76130, Querétaro, Mexico

Abstract

Piquin pepper fruits, a semi-domesticated wild pepper species highly valued in Mexico, currently face the threat of unsustainable harvesting practices that endanger the species. For this reason, it is necessary to establish sustainable agricultural practices for the cultivation of these peppers. Solar radiation, a critical determinant in crop production, plays a crucial role in plant development, influencing a spectrum of physiological and morphological processes, including the synthesis of phytochemicals. Our study evaluated the effect of light manipulation through colored shading nets on the phytochemical profile, antioxidant capacity, and fruit quality of semi-domesticated piquin peppers at two maturation stages: immature and mature (green and red fruits). Our hypothesis posits that these shading treatments may induce changes in these fruits’ phytochemical composition and antioxidant properties, as well as quality. Our results indicate that the shading treatments and maturity stage have significant on capsaicinoid and carotenoid levels, with the highest levels observed in mature fruits. Notably, red fruits grown under black shading treatments resulted in the highest capsaicinoid levels. Carotenoid levels were higher in the black shading treatment during the first cycle, while in the second cycle, the blue shading treatment showed elevated carotenoid levels, suggesting that high irradiance conditions could reduce carotenoid contents. Although no significant differences were observed among the treatments in green fruits, in red fruits, both black and blue treatments exhibited the highest total phenolic compounds in both production cycles. Furthermore, the antioxidant capacity revealed that red fruits exhibited higher antioxidant levels than green fruits. Color analysis showed that red fruits had higher chroma and hue angle values, indicating their brighter and more intense red color than green fruits. The morphological changes in fruit width, length, and weight can be attributed to shading treatments and maturation stages. These results indicate the potential of piquin peppers to act as rich sources of bioactive compounds, emphasizing the benefits of shading as an effective strategy to improve the quality and quantity of phytochemical compounds in piquin peppers. Our findings provide substantial insights into the intricate relationship between maturation, shading treatments, and phytochemical composition, offering a path to improve the nutritional value and quality of piquin peppers.

Funder

Consejo Nacional de Humanidades, Ciencia y Tecnología

Tecnologico de Monterrey

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference64 articles.

1. Horticultural aspects for the cultivated production of piquin peppers (Capsicum annuum L. var. Glabriusculum) a review;HortScience,2019

2. Preferencia del consumidor por el chile piquín en comparación con otros chiles en el noreste de México;Rev. Chapingo Ser. Hortic.,2005

3. Estrategias de mercado para productos elaborados a base de chiltepín en la sierra de Sonora;Rev. Mex. Agroneg.,2013

4. Rodríguez-del Bosque, L.A. (2008). Producción intensiva de chile piquín en el norte de Tamaulipas. Ficha tecnológica por sistema producto. INIFAP, Available online: http://www.inifapcirne.gob.mx/Biblioteca/Publicaciones/536.pdf.

5. Capsaicinoids, flavonoids, tocopherols, antioxidant capacity and color attributes in 23 native peruvian chili peppers (Capsicum spp.) grown in three different locations;Meckelmann;Eur. Food Res. Technol.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3