Improves the Resilience of Cucumber Seedlings under High-Light Stress through End-of-Day Addition of a Low Intensity of a Single Light Quality

Author:

Li Xue1,Zhao Shiwen1,Qiu Chun1,Cao Qianqian1,Xu Peng1,Zhang Guanzhi1,Wu Yongjun2,Yang Zhenchao1

Affiliation:

1. College of Horticulture, Northwest A & F University, Xianyang 712100, China

2. College of Life Sciences, Northwest A & F University, Yangling 712100, China

Abstract

In order to investigate whether an end-of-day (EOD) addition of a single light quality could help alleviate high-light stress in a cucumber, cucumber seedlings were subjected to a 9 d period of high-light stress (light intensity was 1300 ± 50 μmol·m−2·s−1) when they were growing to 3 leaves and 1 heart, while the red light (R), blue light (B), green light (G), far-red light (FR), and ultraviolet A (UVA) light were added in the end-of-day period. The present study was conducted to measure antioxidants, chlorophyll content, and its synthetic degradative enzymes and chlorophyll a fluorescence in response to the degree of stress in cucumber seedlings. The experimental results demonstrated that the addition of blue light, UVA light, and green light significantly decreased the SOD and POD activities in the middle of the treatment (6th day) compared to the dark (D) treatment and improved the absorption performance of the PSI reaction centre of the cucumber seedling leaves to a certain extent (PIABS), but the PSII capacity capture ability (TRo/RC) of the three treatments decreased compared to the D treatment. The MDA content of all the treatments had a significant decrease compared to that of the D treatment. The MDA content of all the treatments was significantly lower than that of D, and its FV/FM was increased to different degrees; the chlorophyll degrading enzyme PPH activity was significantly lower than that of the D treatment when a single light quality was added at the EOD period on the 9th d of treatment. In conclusion, cucumber seedlings subjected to short-term high-light stress can be added during the EOD period with a low-light intensity of a single R, G, B, or UVA light.

Funder

Shaanxi Provincial Technological Innovation Guiding Special Project

Shaanxi Province 100 Billion Facility Agriculture Special Project

Key Technological Innovation and Integration of Facility Vegetables in the Tibetan Plateau

Introduction of Famous Varieties of Facility Vegetables, Melons and Fruits and Construction of Standardised Demonstration Bases

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3