The Use of Two Locally Sourced Bio-Inocula to Improve Nitrogen and Phosphorus Cycling in Soils and Increase Macro and Micronutrient Nutrient Concentration in Edamame (Glycine max. L.) and Pumpkin (Cucurbita maxima)

Author:

Mahmud Kishan1,Franklin Dorcas1,Cabrera Miguel1,Ney Laura1,Dahal Subash1ORCID,Subedi Anish1

Affiliation:

1. Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA

Abstract

Soil macro- and micronutrient nutrient availability and their uptake by plants are critically reliant upon an active presence of the soil microbiome. This study investigated the effect of two locally sourced bio-inocula, local effective microorganisms (LEMs) and false-local effective microorganisms (F-LEMs), on plant available nitrogen (N) and phosphorus (P), and the uptake of calcium (Ca), magnesium (Mg), potassium (K), and zinc (Zn) content in edamame (Glycine max. L.) and pumpkin (Cucurbita maxima) grown in a randomized complete block design with four reps, summer 2017 and 2018, respectively. LEM plots showed greater plant-available N during the first week (edamame season) and fourth week (pumpkin season) after treatment applications. During the pumpkin season, post-treatment plant-available P was greater in both summers in LEM plots. Edamame bean had 19%, 3%, 5%, and 16% greater Ca, Mg, K, and Zn content in LEM plots compared to the Control, respectively. The concentration of K in pumpkin pulp at harvest was 31% higher in LEMs than in F-LEMs, while Mg concentration was 42% higher. Pumpkin pulp and seeds also had 27% and 34% greater Ca and Zn concentrations compared to the Control. Our study suggests that LEMs were effective in solubilizing macro- and micronutrients, which led to increased plant uptake.

Funder

University of Georgia, College of Agricultural and Environmental Science, and the Department of Crop and Soil Sciences

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3