Targeted Metabolome and Transcriptome Analyses Reveal the Molecular Mechanism of Color Variation between Sepals and Petals in Fuchsia hybrida

Author:

Lei Shutong1,Li Jingjing2,Wang Jiaying2,Deng Chengyan1

Affiliation:

1. College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China

2. College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China

Abstract

The sepal color of Fuchsia hybrida is colorful instead of green and usually varies from the petal colors, which greatly increases its ornamental value and attract customers’ preference. However, the potential molecular mechanism underlying the color variation between sepals and petals remains unclear. The present study collected F. hybrida with red sepals and purple petals to explore the key pigments and genes involved in color development using a targeted metabolome and transcriptome. A total of 43 metabolites with diverse hydroxylation, glycosylation, methylation and acylation patterns were isolated and identified by UPLC-MS/MS. The quantification analysis showed that peonidin-3,5-O-diglucoside and malvidin-3,5-O-diglucoside were the most abundant anthocyanins accumulating in the sepals and petals, respectively. Then, six libraries from the sepals and petals were constructed for the transcriptome and 70,135 unigenes were generated. The transcript level of FhF3′H was significantly higher in the sepals, while Fh3′5′H showed more abundant expression in the petals, which can account for the abundant peonidin and malvidin accumulation in the sepals and petals, respectively. The subsequent multiomics analysis showed that both the differentially accumulated anthocyanins and expressed unigenes were enriched in the anthocyanin biosynthesis pathway. Additionally, FhMYBs potentially regulating anthocyanin biosynthesis were screened out by correlation analysis and protein interaction prediction. These findings help to elucidate the molecular mechanisms underlying the color variation between the sepals and petals in F. hybrida.

Funder

Shandong Province Natural Science Foundation, China

Doctoral Initiating Project of Linyi University, China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3