Genome-Wide Analysis of MIKCC-Type MADS-Box Genes Reveals Their Involvement in Flower Development in Malus Lineage

Author:

Ning Kun1,Zhang Wangxiang2,Zhang Donglin3,El-Kassaby Yousry A.4ORCID,Zhou Ting5

Affiliation:

1. College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China

2. College of Forestry, Nanjing Forestry University, Nanjing 210037, China

3. Department of Horticulture, University of Georgia, Athens, GA 30602, USA

4. Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T IZ4, Canada

5. Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China

Abstract

MIKCC-type MADS-box genes are involved in floral organ identity determination but remain less studied in the Malus lineage. Based on the conserved domains of this gene family, we identified 341 genes among 13 species. Classification results showed that the MIKCC-type were generated later than the M-type, after the formation of Chlamydomonas reinhardtii. By phylogenetic analysis, three different groups were divided among 12 plant species, and one group was an ancestral MIKCC-type MADS-box homologous gene cluster from lower moss to higher flowering plants. Comparative analysis of these genes in A. thaliana and Malus lineages revealed a similar pattern evolutionary relationship with the phylogenetic analysis. Three classes of genes of the ABC model in A. thaliana had orthologous genes in the Malus species, but they experienced different evolutionary events. Only a whole-genome duplication (WGD) event was considered to act on the expansion of ABC-model-related genes in the Malus lineage. Additionally, the expression pattern of genes showed to be involved in flowering development stages and anther development processes among different M. domestica cultivars. This study systematically traced the evolutionary history and expansion mechanism of the MIKCC-type MADS-box gene family in plants. The results also provided novel insights for ABC model research of flower development in the Malus lineage.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Scientific Research Programs for High-level Talents Start-up Fund of the Jinling Institute of Technology

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference55 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3