Thidiazuron Promoted Microspore Embryogenesis and Plant Regeneration in Curly Kale (Brassica oleracea L. convar. acephala var. sabellica)

Author:

Zou Jiaqi1,Zou Xiao1,Gong Zhichao1,Song Gengxing1,Ren Jie1,Feng Hui1ORCID

Affiliation:

1. College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China

Abstract

Curly kale (Brassica oleracea L. convar. acephala var. sabellica), the most common type of edible kale, characterized by providing rich nutrition and health care functions, is sought after and has been listed as top of the healthiest vegetables in recent trends, and has aroused the interest of breeders in cultivating new varieties. However, it usually takes more than six years to obtain a homozygous kale inbred line for commercial seed production through conventional breeding procedures due to its long growth and development period. The isolated microspore culture (IMC) technique could be a time-saving alternative method for producing doubled haploid (DH) lines that are genetically homozygous. In this study, we successfully utilize the efficient cytokinin thidiazuron (TDZ) to promote microspore embryogenesis and plant regeneration in two curly kale cultivars (‘Winterbor F2’ and ‘Starbor F2’). Compared with the control (0 mg/L TDZ), all tested TDZ concentrations (0.1, 0.2, 0.3, 0.4 mg/L) had no adverse effects on embryogenesis, and 0.2 mg/L TDZ had an optimal effect on embryo survival and plant regeneration of the two genotypes. For ‘Starbor F2’, 0.2 mg/L TDZ treatment achieved the highest embryogenesis rate (1.83-fold higher than the control group) and direct seeding rate (1.61-fold increase), and the lowest mortality rate. Likewise, 0.2 mg/L TDZ increased the embryogenesis rate of ‘Winterbor F2’ by 1.62 times, the direct seeding rate by 1.61 times, and the mortality rate fell to the lowest. A 1/2 Murashige and Skoog (MS) medium with 0.2 mg/L 1-Naphthaleneacetic acid (NAA) can significantly promote the rooting of the regenerated seedlings. These results provide new insights into the practical application of the IMC technique in shortening the breeding cycle of kale.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference62 articles.

1. Antiproliferative effects of fresh and thermal processed green and red cultivars of curly kale (Brassica oleracea L. convar. acephala var. sabellica);Olsen;J. Agric. Food Chem.,2012

2. Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement;Crit. Rev. Food Sci. Nutr.,2018

3. Glucosinolates, Carotenoids, and Vitamins E and K Variation from Selected Kale and Collard Cultivars;Jung;J. Food Qual.,2017

4. Amino Acid Retention and Protein Quality in Dried Kale (Brassica oleracea L. var. acephala);Korus;J. Food Process. Pres.,2014

5. Composition and antioxidant activity of kale (Brassica oleracea L. var. acephala) raw and cooked;Sikora;Acta Sci. Pol. Technol. Aliment.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3