Mechanisms Underlying the C3–CAM Photosynthetic Shift in Facultative CAM Plants

Author:

Qiu Shuo1,Xia Ke1,Yang Yanni1,Wu Qiaofen1,Zhao Zhiguo1

Affiliation:

1. Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China

Abstract

Crassulacean acid metabolism (CAM), one of three kinds of photosynthesis, is a water-use efficient adaptation to an arid environment. CAM is characterized by CO2 uptake via open stomata during the nighttime and refixation CO2 via the Calvin cycle during the daytime. Facultative CAM plants can shift the photosynthesis from C3 to CAM and exhibit greater plasticity in CAM expression under different environments. Though leaf thickness is an important anatomical feature of CAM plants, there may be no anatomical feature changes during the C3–CAM transition for all facultative CAM plants. The shift from C3 photosynthesis to CAM in facultative CAM plants is accompanied by significant changes in physiology including stomata opening, CO2 gas exchange and organic acid fluxes; the activities of many decarboxylating enzymes increase during the shift from C3 to CAM; the molecular changes occur during the photosynthesis C3–CAM shift involved DNA hypermethylation, transcriptional regulation, post-transcriptional regulation and protein level regulation. Recently, omics approaches were used to discover more proceedings underling the C3–CAM transition. However, there are few reviews on the mechanisms involved in this photosynthetic shift in facultative CAM plants. In this paper, we summarize the progress in the comparative analysis of anatomical, physiological, metabolic and molecular properties of facultative CAM plants between C3 and CAM photosynthesis. Facultative CAM plants also show the potential for sustainable food crop and biomass production. We also discuss the implications of the photosynthesis transition from C3 to CAM on horticultural crops and address future directions for research.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Guangxi

Innovation Team of Guangxi Academy of Sciences for Innovation and Utilization of Germplasm in Horticultural Crops

Guangxi Institute of Botany

Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3