Stable Soil Moisture Alleviates Water Stress and Improves Morphogenesis of Tomato Seedlings

Author:

Li Ge1ORCID,Long Huaiyu1,Zhang Renlian1,Drohan Patrick J.2,Xu Aiguo1,Niu Li1

Affiliation:

1. State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 South Road, Zhongguancun, Haidian District, Beijing 100081, China

2. Department of Ecosystem Science and Management, Pennsylvania State University, University Park, State College, PA 16802, USA

Abstract

Previous studies on soil water–plant relations have mostly focused on the soil water content (SWC), while the effect of soil moisture stability on plant growth has received surprisingly little attention. Potted tomato seedlings were used to examine the effect of stable soil moisture (SM) and fluctuating soil moisture (FM) on plant growth, development, and water use efficiency (WUE) in this study. The results showed that (i) soil moisture stability significantly affected the growth and development, photosynthetic characteristics, morphological traits, root morphology, and water physiological characteristics of seedling tomatoes, with SM being more conducive for most of these indices. (ii) SM improved the leaf WUE by reducing the content of abscisic acid in plants, regulating plant osmotic substances, maintaining a high gas exchange rate, and promoting plant morphology. (iii) SM could avoid water stress on tomato seedlings; even if the SWC of SM was equal to or lower than the SWC of FM, water stress would not occur under SM, whereas it would occur under FM. Overall, compared with FM, SM promoted beneficial plant morphology, maintained a high gas exchange rate, and did not induce water stress for tomato seedlings—ultimately improving WUE. This effect was more effective under low-SWC conditions than under high-SWC conditions. These findings provide a new perspective and theoretical basis for soil water–plant relations and indicate that SM has great potential in promoting plant growth and improving WUE.

Funder

National Key Research and Development Program of China

Third Xinjiang Scientific Expedition Program

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3