Technologies and Innovative Methods for Precision Viticulture: A Comprehensive Review

Author:

Ferro Massimo Vincenzo1ORCID,Catania Pietro1ORCID

Affiliation:

1. Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Building 4, 90128 Palermo, Italy

Abstract

The potential of precision viticulture has been highlighted since the first studies performed in the context of viticulture, but especially in the last decade there have been excellent results have been achieved in terms of innovation and simple application. The deployment of new sensors for vineyard monitoring is set to increase in the coming years, enabling large amounts of information to be obtained. However, the large number of sensors developed and the great amount of data that can be collected are not always easy to manage, as it requires cross-sectoral expertise. The preliminary section of the review presents the scenario of precision viticulture, highlighting its potential and possible applications. This review illustrates the types of sensors and their operating principles. Remote platforms such as satellites, unmanned aerial vehicles (UAV) and proximal platforms are also presented. Some supervised and unsupervised algorithms used for object-based image segmentation and classification (OBIA) are then discussed, as well as a description of some vegetation indices (VI) used in viticulture. Photogrammetric algorithms for 3D canopy modelling using dense point clouds are illustrated. Finally, some machine learning and deep learning algorithms are illustrated for processing and interpreting big data to understand the vineyard agronomic and physiological status. This review shows that to perform accurate vineyard surveys and evaluations, it is important to select the appropriate sensor or platform, so the algorithms used in post-processing depend on the type of data collected. Several aspects discussed are fundamental to the understanding and implementation of vineyard variability monitoring techniques. However, it is evident that in the future, artificial intelligence and new equipment will become increasingly relevant for the detection and management of spatial variability through an autonomous approach.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3