Intercropping Gramineae Herbage in Semiarid Jujube Cultivar ‘LingwuChangzao’ (Ziziphus jujuba Mill. cv. LingwuChangzao) Orchard Improves Productivity, Plant Nutritional Quality, and Soil Quality

Author:

Wang XiaojiaORCID,Cao Bing,Zou Jin,Xu Aiyun,Feng Xuerui

Abstract

Forest-grass intercropping has great advantages in exploiting the potential of biological resources, improving the productivity of agriculture. Nevertheless, research on intercropping of ‘LingwuChangzao’ (Ziziphus jujuba Mill. cv. LingwuChangzao) with Gramineae herbage is less frequently reported. In this study, we measured the land equivalent ratio (LER), the nutritional quality of fruit and forage, and soil properties when ‘LingwuChangzao’ jujube was intercropped with Gramineae herbage compared to when grown in a corresponding monoculture, using clean tillage as a control. The results indicated that ‘LingwuChangzao’ jujube/Gramineae herbage intercropping significantly improved the LER in the system, the appearance traits, and the quality of jujube fruit (e.g., the total soluble solids, soluble sugar, vitamin C, anthocyanin, and flavonoids). Conversely, some nutritional quality indicators, such as dry matter, crude protein, crude fat, and neutral detergent fiber of forage, were lower than the corresponding monoculture. The physical properties in the soil improved with increased soil water content, electrical conductivity, total nitrogen, available phosphorus, etc. Further, intercropping systems had significant effects on soil organic carbon fractions and most of the C-N cycling enzyme activities. Redundancy analyses (RDA) revealed that electrical conductivity and total nitrogen were the dominant soil factors that influenced the C-N cycling enzyme activities and four soil organic carbon fractions correlated with C-N cycling soil enzyme activities. In conclusion, these results demonstrated that ‘LingwuChangzao’ jujube/Gramineae herbage intercropping significantly altered C-N cycling enzyme activities by driving the soil physicochemical properties and soil organic carbon fractions. Our findings show how to improve the productivity of ‘LingwuChangzao’ jujube and they provide insights into the mechanisms underlying healthy, biodiverse soils in agroecosystems.

Funder

Top Discipline Construction Project of Pratacultural Science of Ningxia University

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3