Functional Characterization of Tea Plant (Camellia sinensis L.) CsCBF2 Gene Involved in Multiple Abiotic Stress Response in Tobacco (Nicotiana tabacum L.)

Author:

Zhou Qiying,Liu Dongxiao,Wei Yiwan,Ma Ning,Zhang Ruijiao,Zhang Zengya,Jiang Changjun,Yuan Hongyu

Abstract

C-repeat binding factors/dehydration responsive element binding factors 1 (CBFs/DREB1s) are a small family of transcription factors that play important roles in plant resistance to various external stresses. However, functional characterization of tea plant (Camellia sinensis L.) CBF gene (CsCBF) was still seldom reported. Here, functional study of the cold-responsive CBF gene (CsCBF2) was done. Results showed that CsCBF2 had conserved AP2 DNA-binding domain and the typical PKK/RPAGRxKFxETRHP and DSAWR signature sequences of CBF/DREB1. Yeast one-hybrid and transcription activation assays revealed that the activation domain of CsCBF2 could activate the reporter gene expression, and the N terminal of CsCBF2 displayed an inhibitory effect. Although CsCBF2 was conserved to bind the C-repeat/dehydration-responsive element (CRT/DRE), intact CsCBF2 protein preferred the CRT cis element. Under normal growth conditions, CsCBF2-overexpressing tobacco plants (CsCBF2-OX) exhibited lighter green leaf color, growth retardation, and dwarfism. Smaller leaf of CsCBF2-OX was only seen in eight weeks after been sown in soil. Under cold, salinity, or drought stress, CsCBF2-OX displayed better growing with longer roots, heavier fresh weight, higher germination rate, and accumulated more proline and sugar contents, but lower electrolyte leakage. The results demonstrated that CsCBF2 enhanced plant tolerance to multiple abiotic stresses.

Funder

National Key Research and Development Program of China

the National Natural Science Foundation of China

Scientific and Technological Research Projects of Henan Province

Nanhu Scholars Program for Young Scholars of XYNU

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3