Combination of Selenium and Methyl Jasmonate Controls Postharvest Tomato Gray Mold by Damaging the Membrane System

Author:

Yuan Xiang,Li Changyin,Xie JiataoORCID,Li Keyi,Chen Siqi,Yuan LinxiORCID,Hu Chengxiao,Wang Xu,Zhao XiaohuORCID

Abstract

Tomato, which is regarded as an important worldwide crop, is susceptible to gray mold caused by Botrytis cinerea. Selenium and methyl jasmonate can act as antifungal agents against pathogenic infections. To clarify the effect of selenium and methyl jasmonate on the fungal pathogen, the spore germination and mycelial growth of B. cinerea were investigated in vitro using the growth rate method. Additionally, the electrical conductivity, soluble protein content, malondialdehyde content and oxalic acid secretion of B. cinerea mycelium were also determined to further explore the antifungal mechanism of selenium and methyl jasmonate. The results showed that selenium application significantly increased cell membrane permeability and malondialdehyde content, and methyl jasmonate treatment decreased the soluble protein content in mycelium of B. cinerea. Furthermore, supplementation of the medium with both selenium and methyl jasmonate effectively inhibited spore germination and colony growth of B. cinerea by compromising membrane integrity, and significantly reduced soluble protein content and the oxalic acid secretion of hypha. The resulting incidence of postharvest tomato gray mold with the combination of selenium and methyl jasmonate was 34.7%, which was approximately half of that of the control. To sum up, the combined use of selenium and methyl jasmonate inhibited the normal physiological activity and pathogenicity of B. cinerea, which suggests that selenium and methyl jasmonate have the potential for controlling gray mold disease caused by B. cinerea in postharvest fruits and vegetables. These findings may offer a promising and eco-friendly strategy to control gray mold disease in postharvest fruits and vegetables.

Funder

the Opening Project of Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3