Antifreeze Protein Improves the Cryopreservation Efficiency of Hosta capitata by Regulating the Genes Involved in the Low-Temperature Tolerance Mechanism

Author:

Pe Phyo Phyo Win,Naing Aung HtayORCID,Kim Chang Kil,Park Kyeung IlORCID

Abstract

In this study, whether the addition of antifreeze protein (AFP) to a cryopreservative solution (plant vitrification solution 2 (PVS2)) is more effective in reducing freezing injuries in Hosta capitata than PVS2 alone at different cold exposure times (6, 24, and 48 h) is investigated. The upregulation of C-repeat binding factor 1 (CBF1) and dehydrin 1 (DHN1) in response to low temperature was observed in shoots. Shoots treated with distilled water (dH2O) strongly triggered gene expression 6 h after cold exposure, which was higher than those expressed in PVS2 and PVS2+AFP. However, 24 h after cold exposure, gene expressions detected in dH2O and PVS2 treatments were similar and higher than PVS2 + AFP. The expression was highest in PVS2+AFP when the exposure time was extended to 48 h. Similarly, nitric reductase activities 1 and 2 (Nia1 and Nia2) genes, which are responsible for nitric oxide production, were also upregulated in low-temperature-treated shoots, as observed for CBF1 and DHN1 expression patterns during cold exposure periods. Based on the gene expression patterns, shoots treated with PVS2+AFP were more likely to resist cold stress, which was also associated with the higher cryopreservation efficiency of PVS2+AFP compared to PVS2 alone. This finding suggests that the improvement of cryopreservation efficiency by AFP could be due to the transcriptional regulation of CBF1, DHN1, Nia1, and Nia2, which might reduce freezing injuries during cryopreservation. Thus, AFP could be potentially used as a cryoprotectant in the cryopreservation of rare and commercially important plant germplasm.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3