In Vitro Effect of Purple Amomum (Amomum longiligulare T.L. Wu) Extracts on Seed Germination and Seedling Growth of Different Crop Species

Author:

Khuat Quyet V.12ORCID,Kalashnikova Elena A.1ORCID,Nguyen Hai T.3ORCID,Trukhachev Vladimir I.4,Kirakosyan Rima N.1ORCID

Affiliation:

1. Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, Moscow 127434, Russia

2. Department of Biology and Agricultural Engineering, Hanoi Pedagogical University 2, Nguyen Van Linh, Phuc Yen 15000, Vietnam

3. Biotechnology Faculty, Vietnam National University of Agriculture, Gia Lam, Hanoi 12406, Vietnam

4. Head Eployment, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, Moscow 127434, Russia

Abstract

The ginger family member purple amomum (Amomum longiligulare T.L. Wu) is an important medicinal plant in Vietnam. Although there have been studies on the chemical composition of essential oils and extracts of purple amomum, as well as their antibacterial, antifungal, activating macrophages, and immune enhancement effects, there is still a lack of evaluation of the phytotoxicity of this plant. In this study, the total content of phenolic (TPC) and flavonoid (TFC) in extracts of leaf, seed, pseudo-stem, rhizome, and root from purple amomum and the phytotoxic effect of these extracts against five test plant species, including four dicotyledonous: camelina (Camelina sativa Crantz), quinoa (Chenopodium quinoa Willd.), cabbage (Brassica oleracea var. capitata L.), tomato (Solanum lycopersicum L. cv. Dubrava), and one monocotyledonous: onion (Allium cepa L. cv. Stuttgarter risen), were investigated. Results showed that the seed and leaf extracts had higher total phenolic and flavonoid contents than the other two extracts (highest TPC value: 4.30 ± 0.03 mg GAE/mg dry weight of seed powder; highest TFC value: 1.32 ± 0.07 mg QE/mg dry weight of leaf powder). Furthermore, it was observed that the extracts of purple amomum inhibited seed germination and the growth of seedlings of all test plant species with different inhibition values. The general trend in all treatments showed that, when increasing the concentration of extracts from 0.10–0.20 mg/mL, the ability to inhibit seed germination, hypocotyl length, radicle length, fresh weight, and dry weight increased. Seed extract at a concentration of 0.20 mg/mL in most treatments showed the highest percentage inhibition of seed germination and growth of seedlings of the tested species. Onion was the most sensitive to purple amomum extracts among the five species tested. Based on these results, we conclude that extracts of different parts of the purple amomum exhibited phytotoxicity for the tested species. Further evaluation of the phytotoxic potential of the extracts on weed species and under field conditions is also recommended for the purpose of developing bio-herbicides for future weed management that are less toxic to the environment and human health.

Funder

Grants from the President of the Russian Federation

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3