Characterization, Evolutionary Analysis, and Expression Pattern Analysis of the Heat Shock Transcription Factors and Drought Stress Response in Heimia myrtifolia

Author:

Zhang Guozhe123,Gu Cuihua123,Ye Yacheng123,Zhao Yu123,Shang Linxue123,Shao Weili123,Hong Sidan123,Ma Jin123

Affiliation:

1. College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China

2. Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China

3. Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China

Abstract

Heat shock transcription factors (HSFs) are among the most important regulators of plant responses to abiotic stimuli. They play a key role in numerous transcriptional regulatory processes. However, the specific characteristics of HSF gene family members and their expression patterns in different tissues and under drought stress have not been precisely investigated in Heimia myrtifolia. This study analyzed transcriptome data from H. myrtifolia and identified 15 members of the HSF family. Using a phylogenetic tree, these members were classified into three major classes and fifteen groups. The amino acid physicochemical properties of these members were also investigated. The results showed that all HmHSF genes are located in the nucleus, and multiple sequence alignment analysis revealed that all HmHSF proteins have the most conserved DBD structural domains. Interestingly, a special HmHSF15 protein was found in the three-dimensional structure of the protein, which has a conserved structural domain that performs a function in addition to the unique structural domain of HSF proteins, resulting in a three-dimensional structure for HmHSF15 that is different from other HmHSF proteins. GO enrichment analysis shows that most HmHSFA-like genes are part of various biological processes associated with abiotic stresses. Finally, this study analyzed the tissue specificity of HmHSF genes in different parts of H. myrtifolia by qRT-PCR and found that HmHSF genes were more abundantly expressed in roots than in other tissues, and HmHSF05, HmHSF12, and HmHSF14 genes were different from other HSF genes, which could be further analyzed to verify their functionality. The results provide a basis for analyzing the functions of HmHSF genes in H. myrtifolia and help to explore the molecular regulatory mechanism of HmHSF in response to drought stress.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3