Grafting and Plant Density Influence Tomato Production in Organic Farming System

Author:

Caradonia Federica1ORCID,Francia Enrico1ORCID,Alfano Vincenzo2,Ronga Domenico2ORCID

Affiliation:

1. Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola, n. 2, 42122 Reggio Emilia, Italy

2. Pharmacy Department, University of Salerno, Via Giovanni Paolo II, n. 132, 84084 Fisciano, Salerno, Italy

Abstract

The tomato is a key crop cultivated worldwide for the fresh and processing markets. Only a small percentage of the tomatoes processed by industries were produced following the guidelines of the organic farming system. Potential reasons for the limited share of organic tomato production are probably related to the lower yield obtained in organic farming in comparison with conventional farming. In this study, the use of the cherry tomato genotype ‘Tomito’ as a rootstock and two different plant densities (2.5 and 1.25 plant m−2) were evaluated in order to improve the agronomic performances of the commercial processing tomato genotype ‘H3402′ cultivated in the organic farming system. Agronomic and quality parameters were assessed at harvest time. The plant density influenced the plant biometric parameters, mass and marketable yield, and fruit health and quality. The use of a rootstock improved the marketable yield per plant (more than 59%), with the quality of the fruit decreasing the number of sunburnt fruits (−27.7%). The use of the ‘Tomito’ as a rootstock and a plant density of 2.5 plant m−2 are the better choices to achieve good performances in optimal environmental conditions. However, further studies are required to validate these results both in other environments and using different scions.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3