Quantitative Perturbation Analysis of Plant Factory LED Heat Dissipation on Crop Microclimate

Author:

Yu Haibo1ORCID,Yu Haiye1,Zhang Bo1,Chen Meichen1,Liu Yucheng2,Sui Yuanyuan1

Affiliation:

1. College of Biological and Agricultural Engineering, Jilin University, Changchun 130012, China

2. College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

Regulating plant factories is crucial for optimal plant growth and yield. Although LEDs (light-emitting diode) are called cold light sources, more than 80% of the heat is still emitted into the surrounding environment. In high-density vertical agricultural facilities, the crop canopy is positioned close to the light source to maximize light absorption and promote plant growth. LED heat dissipation can cause disturbances in the microclimate of crop canopies, which can lead to tip burn disease in plant crops and result in economic losses for plant factories. CFD (computational fluid dynamics) is used as the main technical tool to simulate and optimize the environment of agricultural facilities. This study utilized Star-ccm+ to simulate the microclimate of plant factories under different light treatments. Uniformity coefficient UI and disturbance coefficient θ were proposed to quantitatively analyze LED heat dissipation’s impact on microclimate. In the T5 treatment group, which had a PPFD of 350 μmol/m2·s in the growth zone and 250 μmol/m2·s in the seedling zone, the relative humidity (RH), airflow, and temperature uniformity coefficients UI were 0.6111, 0.3259, and 0.5354, respectively, with corresponding disturbance coefficients θ of 0.0932, 0.1636, and 0.1533. This study clarifies the degree of perturbation caused by LED heat dissipation on microclimate, providing a theoretical basis for regulating plant factory light and promoting sustainability.

Funder

Key Research and Development Focus for the 14th Five-Year Plan period: Research and Development of Key Technologies and Devices for Mobile Phenotype Platform’s Active Collaborative Data Collection

Research on Self-regulation Mechanism for Efficient Nitrogen Use in Symbiotic Hydroponically—Grown Vegetables Based on Trophic Niche Differentiation

Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agriculture Equipment

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3