Affiliation:
1. Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
2. Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, TO, Italy
Abstract
Zinc oxide (ZnO) particles have recently received attention in different agriculture sectors as new technologies and practices are entering into force with limited adverse effects on the environment. However, various works have reported both positive or negative effects on plants. The present study focused on an evaluation of the effects of four different new micro- and nano-sized ZnO particles (namely, Desert Roses (DRs), MultiPods (MPs), NanoFlakes (NFs), and NanoParticles (NPs)) on the seed germination traits of Ocimum basilicum L., Lactuca sativa L., and Lepidium sativum L. ZnO particles were applied at concentrations of 12.5 ppm, 25 ppm, and 50 ppm. Seeds moistened with deionized water were used as a control. All the particles were characterized by field emission scanning electron microscopy, and their production of Reactive Oxygen Species (ROS) under seed germination conditions was evaluated through electron paramagnetic resonance spectroscopy. Seeds of each species were put on filter paper under controlled conditions in both dark and light photoperiods. In this bioassay, the final germination percentage (FGP), early root length, and index of germination were evaluated. The results showed a wide variability of response to the type and concentration of ZnO particles and to the applied photoperiod of the three studied species. O. basilicum FGP increased when treated with NPs and DRs already at the lowest concentration and especially in light conditions with values significantly superior to those of the control (71.1%, 69.4%, and 52.2%, respectively). At higher concentrations, phytotoxicity on root length was observed, with a reduction of circa 30% in comparison to untreated seeds. On the contrary, in L. sativum, a phytotoxic effect was seen in radicle length with all the used ZnO particles and concentrations. L. sativa seeds did not show significant effects due to the type of particles, with a reduction in FGP only at higher concentrations and particularly in light conditions. Upon light irradiation, different levels of ROS were counted by the application of ZnO particles. DRs produced the highest amount of DMPO-OH adduct (up to 2.7 × 10−5 M) followed by the NP type (2.0 × 10−5 M). Taking together all these findings, the seeds’ coat morphology, their ability to absorb ZnO particles, and the ROS production in light conditions are indeed crucial players in the application of these formulations in seed germination.