Association of Microbiome Diversity with Disease Symptoms in Brassica oleracea Leaves

Author:

Martín-Cardoso Héctor1ORCID,González-Miguel Víctor M.1ORCID,Soler-López Luis1ORCID,Campo Sonia2,San Segundo Blanca13ORCID

Affiliation:

1. Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallès), C/de la Vall Moronta, CRAG Building, 08193 Barcelona, Spain

2. Fundació Miquel Agustí/HorPTA, Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, Campus del Baix Llobregat–Edifici D4. C/Esteve Terrades 8, 08860 Barcelona, Spain

3. Consejo Superior de Investigaciones Científicas (CSIC), 08193 Barcelona, Spain

Abstract

Cabbage (Brassica oleracea), a crop of major economic importance worldwide, is affected by numerous diseases, which are caused by a wide range of microorganisms, including fungi, oomycetes, bacteria, and viruses, which lead to important losses in yield and quality. The increasing availability of reference genomes of plant-associated microbes together with recent advances in metagenomic approaches provide new opportunities to identify microbes linked to distinct symptomatology in Brassica leaves. In this study, shotgun metagenomics was used to investigate the microbial community in leaves of B. oleracea plants from agricultural farmlands. Compared with conventional techniques based on culture-based methods, whole-genome shotgun sequencing allows the reliable identification of the microbial population inhabiting a plant tissue at the species level. Asymptomatic and symptomatic leaves showing different disease symptoms were examined. In the asymptomatic leaves, Xanthomonas species were the most abundant taxa. The relative abundance of bacterial and fungal communities varied depending on disease symptoms on the leaf. The microbiome of the leaves showing mild to severe levels of disease was enriched in bacterial populations (Sphingomonas, Methylobacterium, Paracoccus) and to a lesser degree in some fungal taxa, such as Alternaria and Colletotrichum (e.g., in leaves with high levels of necrotic lesions). Sclerotinia species were highly abundant in severely damaged leaves (S. sclerotium, S. trifolium, S. bolearis), followed by Botrytis species. The common and specific bacterial and fungal species associated to disease symptoms were identified. Finally, the analysis of the gene functions in the metagenomic data revealed enrichment in carbohydrate-active enzymes potentially involved in pathogenicity, whose distribution also varied among disease severity groups. Understanding the B. oleracea leaf microbiome in agricultural ecosystems will pave the way for the efficient management of diseases in this crop.

Funder

Severo Ochoa Program for Centres of Excellence in R&D

CERCA Program/“Generalitat de Catalunya”

ERDF A way of making Europe

Generalitat de Catalunya

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3