Optimization of Fermentation Culture Medium for Sanghuangporus alpinus Using Response-Surface Methodology

Author:

Gao Yuhan12,Li Xiaomin13,Xu Hui13,Sun Huijuan4,Zhang Junli4,Wu Xiaoping13,Fu Junsheng13ORCID

Affiliation:

1. College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Chemical and Biomolecular Engineering Department, College of Design and Engineering, National University of Singapore, Singapore 117585, Singapore

3. Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China

4. Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa 850000, China

Abstract

The newly identified Sanghuangporus alpinus species of the Sanghuang mushroom genus has been found to possess significant medical benefits. However, the current artificial cultivation technology has not reached the requisite maturity. The response-surface methodology (RSM) was used to optimize the Sanghuangporus alpinus culture medium formulation and evaluate the functional activity of S. alpinus exopolysaccharides. First, a single-factor experiment was conducted to screen for optimal carbon and nitrogen sources for S. alpinus. Then, using Box–Behnken’s central composite design, a response-surface experiment was conducted to determine optimal culture parameters. Finally, the rationality of those parameters was assessed in a shaking flask experiment. The optimal culture parameters, determined through regression analysis, were 20.20 ± 0.17 g/L fructose (carbon source), 7.29 ± 0.10 g/L yeast extract (nitrogen source), and 0.99 ± 0.01 g/L dandelion. With optimization, the S. alpinus yield increased to 12.79 ± 1.41 g/L, twice that obtained from the initial culture medium. The S. alpinus exopolysaccharide exhibited an excellent antioxidant capacity, with the strongest scavenging effect noted on ABTS free radicals (lowest half-inhibitory concentration: 0.039 mg/mL). Additionally, this exopolysaccharide effectively inhibited various cancer cells, exhibiting the strongest activity against human glioma cells U251 (half-inhibitory concentration: 0.91 mg/mL). The RSM used to optimize the fermentation culture parameters of S. alpinus significantly increased the mycelial biomass. The improvement of Sanghuangporus alpinus yield through liquid fermentation and optimizing the fermentation medium could fill the existing gap in the cultivation of Sanghuangporus alpinus, as well as provide valuable data for the large-scale production of S. alpinus.

Funder

Key Development Project of Science and Technology Department of Tibet

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3