Identification and Characterization of a Virulent Meloidogyne incognita Population Breaking Tomato Mi-1-Mediated Resistance in Indiana

Author:

Kunwar Vijay1,Guan Wenjing2ORCID,Zhang Lei13

Affiliation:

1. Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA

2. Department of Horticultural and Landscape Architecture, Purdue University, Southwest Purdue Agricultural Center, Vincennes, IN 47591, USA

3. Department of Entomology, Purdue University, West Lafayette, IN 47907, USA

Abstract

High-tunnel production is increasing rapidly in the US due to its effectiveness in extending production seasons. Tomato is considered one of the most profitable crops grown in high tunnels. The elevated soil temperature and constant soil moisture in high tunnels lead to the buildup of root-knot nematodes (RKNs). Growing RKN-resistant tomato cultivars or grafting onto RKN-resistant tomato rootstocks is considered effective in managing RKNs. However, all of the RKN-resistant tomato cultivars or rootstocks carry the same resistance gene, Mi-1. This lack of diversity in resistance has led to the emergence of virulent RKN populations breaking tomato Mi-1 resistance. Here, we identified and characterized a virulent population of Meloidogyne incognita from a high tunnel in Indiana. The M. incognita population was confirmed as being able to infect and reproduce on two resistant tomato cultivars, Better Boy and Early Girl, carrying the Mi-1 gene, under a controlled environment at 24 °C. To our knowledge, this is the first report of a virulent M. incognita population breaking Mi-1 resistance in Indiana. Virulent M. incognita populations overcoming Mi-1 resistance were previously reported in California and Georgia in the US. This work emphasizes the importance of regularly monitoring RKN population virulence to sustainably manage the pest.

Funder

Specialty Crop Research Initiative

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3