Seaweed Polysaccharides as Potential Biostimulants in Turnip Greens Production

Author:

Mamede Mariana1ORCID,Cotas João12ORCID,Pereira Leonel12ORCID,Bahcevandziev Kiril3ORCID

Affiliation:

1. CFE—Centre for Functional Ecology: Science for People & Planet, Marine Resources, Conservation and Technology—Marine Algae Lab, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal

2. IATV—Instituto do Ambiente Tecnologia e Vida, Faculdade de Ciências e Tecnologia, 3030-790 Coimbra, Portugal

3. Research Centre for Natural Resources, Environment and Society (CERNAS), Coimbra Agriculture School, Polytechnic of Coimbra, 3045-601 Coimbra, Portugal

Abstract

Seaweed polysaccharides can act as substitutes for synthetic compounds present in commercial stimulants and fertilizers used in agriculture to improve crop yields and vigor. In this study, three different polysaccharides (alginate, agar, and carrageenan) were extracted from one brown seaweed, Saccorhiza polyschides, and two red seaweeds, Gracilaria gracilis and Chondrus crispus, respectively, and applied to potted turnip greens (Brassica napus L.), with the intention to analyze their impact on plant growth, development, and metabolism. Turnip greens treated with polysaccharides, especially carrageenan of C. crispus, showed the best results in improving the crop productivity in terms of plant length and weight, number of leaves, nutrient and pigment content, and soil fertility compared with turnip greens from the negative control or those treated with a commercial leaf fertilizer. λ-carrageenan extracted from the tetrasporophyte generation of C. crispus had the highest bioactivity and positive effect on turnip greens among all treatments. λ-carrageenan has been shown to improve plant growth; increase the plant’s biomass (plant leaves: CC(T) (40.80 ± 5.11 g) compared to the positive control (15.91 ± 15.15 g)) and root system; enhance photosynthetic activity; increase the uptake of soil nutrients; and protect plants against abiotic and biotic stresses, stimulating the production of secondary metabolites and managing its defense pathways. Seaweed-extracted polysaccharides have the potential to be used in sustainable agriculture.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3