An Evaluation of the Effect of Fertilizer Rate on Tree Growth and the Detection of Nutrient Stress in Different Irrigation Systems

Author:

Neupane Krishna1,Witcher Anthony1,Baysal-Gurel Fulya1ORCID

Affiliation:

1. Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN 37209, USA

Abstract

Early season monitoring of nutrient stress is important in red maple (Acer rubrum L.) and flowering dogwood (Cornus florida L.) to optimize management practices and ensure healthy crop production in containers. Two different irrigation systems (drip and overhead irrigation) were used in this study. Two rates (low and high) of controlled-release fertilizer were used with no fertilizer as a control treatment. Data were recorded for plant height, stem diameter, substrate pH and electrical conductivity (EC), chlorophyll content, normalized difference vegetation index (NDVI), visual observation of plant quality, and leaf nutrient content. The results of this study showed that the increase in plant height and stem diameter was greater among the fertilized maple tree, whereas no differences were observed in the flowering dogwoods for an increase in plant height. NDVI was greater for drip irrigation for both fertilizer rates in both red maples and flowering dogwoods. A positive correlation of 73% to 83% was observed for red maples and 79% to 83% was observed for flowering dogwoods between handheld NDVI and unmanned aerial vehicle-mounted NDVI sensors. In red maple, a high fertilizer rate resulted in greater substrate pH, whereas in flowering dogwood, no differences were observed. Varied responses were observed among the treatments for nutrient content; however, both rates of fertilizer application were sufficient for both tree species. Drip-irrigated red maples had higher nitrogen and phosphorous content, whereas nitrogen content was higher in both irrigation systems in flowering dogwoods. This study provides useful insights into understanding the effect of nutrient stress on tree growth and the application of sensing technology for the monitoring and early detection of nutrient stress in container-grown nursery crops.

Funder

National Institute of Food and Agriculture, United States Department of Agriculture Capacity Building

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3