Wood Distillate Mitigates Ozone-Induced Visible and Photosynthetic Plant Damage: Evidence from Ozone-Sensitive Tobacco (Nicotiana tabacum L.) BelW3

Author:

Vannini Andrea1ORCID,Petraglia Alessandro1ORCID

Affiliation:

1. Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy

Abstract

The use of wood distillate (WD) is emerging as a valuable strategy for protecting horticultural crops from the oxidizing effects of ozone (O3). To fully understand its effectiveness, extensive testing on different plant species is needed. As a viable interim measure, an assessment of WD efficacy in model plants can be made until species-specific results become available. The aim of this study is to evaluate the ability of WD to protect the ozone-sensitive tobacco plant (Nicotiana tabacum L.) BelW3 from the oxidizing effects of O3, using the ozone-resistant tobacco plant BelB as a benchmark. The protective effect was evaluated during treatment applications and three weeks after these were completed. Ten BelW3 and five BelB plants were grown just outside Parma from June to October 2023, a period when average maximum O3 concentrations were at least 120 ppb. Starting from July, five BelW3 plants were sprayed weekly with WD at 0.2% for two months. Morphometric and photosynthetic measurements were then taken after six and 11 weeks from the beginning of treatments and three weeks after the end to assess protection persistence (if any). BelW3 showed a significant effect of O3 compared to BelB plants for both morphometric and photosynthetic measurements, exhibiting increased necrotic areas on the leaf blade, reduced number of viable leaves, reduced average plant height, together with reduced chlorophyll content and impaired photosynthetic system functionality. BelW3 plants also showed a significant decrease in the efficiency of parameters related to PSII and PSI when compared to BelB. Wood distillate application, however, successfully mitigated O3 effects on BelW3, as revealed by morphometric and photosynthetic values, which were in line with those observed in BelB. Notably, WD protective effect persisted 3 weeks after treatment cessation, highlighting the short-term protective capacity of the distillate against the oxidative action of O3.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3