A New Plant-Wearable Sap Flow Sensor Reveals the Dynamic Water Distribution during Watermelon Fruit Development

Author:

Zhang Runqing1,Chai Yangfan2,Liang Xinyu1,Liu Xiangjiang2ORCID,Wang Xiaozhi3,Hu Zhongyuan14ORCID

Affiliation:

1. College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China

2. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China

3. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China

4. Hainan Institute of Zhejiang University, Yazhou District, Sanya 572025, China

Abstract

This study utilized a plant-wearable sap flow sensor developed by a multidisciplinary team at Zhejiang University to monitor water distribution patterns in watermelon fruit stalks throughout their developmental stages. The dynamic rules of sap flow at different stages of fruit development were discovered: (1) In the first stage, sap flow into the fruit gradually halts after sunrise due to increased leaf transpiration, followed by a rapid increase post-noon until the next morning, correlating with fruit expansion. (2) In the second stage, the time of inflow sap from noon to night is significantly shortened, while the outflow sap from fruit is observed with the enhancement of leaf transpiration after sunrise, which is consistent with the slow fruit growth at this stage. (3) In the third stage, the sap flow maintains the diurnal pattern. However, the sap flow that inputs the fruit at night is basically equal to the sap flow that outputs the fruit during the day; the fruit phenotype does not change anymore. In addition, a strong correlation between the daily mass growth in fruit and the daily sap flow amount in fruit stalk was identified, validating the sensor’s utility for fruit growth monitoring and yield prediction.

Funder

Earmarked Fund for China Agriculture Research System

Project of Sanya Yazhou Bay Science and Technology City

Science and Technology Innovation Platform for Watermelon and Melon Breeding, Reproduction, and Spreading of Zhejiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3