Identification of an Entomopathogenic Fungus, Pseudozyma flocculosa (Traquair, Shaw & Jarvis), and Its Efficacy against Tetranychus urticae Koch

Author:

Zhang Yan1,Dong Rui1,Hu Shouyin1ORCID,Guo Zhaojiang1ORCID,Wang Shaoli1ORCID

Affiliation:

1. State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

The two-spotted spider mite, Tetranychus urticae Koch, is one of the most important agricultural pests worldwide, with chemical application being the primary control method. However, frequent heavy use or misuse of insecticides has accelerated the development of varying degrees of resistance in T. urticae. This makes the chemical control of this mite more challenging. Biocontrol methods have attracted much attention due to their safety and environment-friendly impact. Based on previous observations that the population of T. urticae was infected by unknown pathogenic fungi, we isolated, identified, and evaluated the pathogenicity of the fungi from infected mites. Through available morphological and molecular identification, the fungus was identified as Pseudozyma flocculosa. The virulence activity of the strain was evaluated at different concentrations of spore suspension (106–109 conidia/mL) using a spraying method. The strain showed pathogenic activity against the T. urticae in adult females that varied with different concentrations and temperatures. Meanwhile, the P. flocculosa also had a significant toxic effect on the developmental stages of T. urticae. In the laboratory bioassay, the mortality rate of the tested mites reached 100% at 9 d after P. flocculosa treatment. Additionally, a wettable powder processed with P. flocculosa conidia was applied on the T. urticae in the greenhouse and the control efficacy reached up to 90% at 7 d after treatment. The results showed a high insecticidal activity of P. flocculosa against T. urticae, indicating that this fungus possesses great potential for use as a bio-insecticidal agent.

Funder

National Key R&D Program of China

Hainan Province Science and Technology Special Fund

National Natural Science Foundation of China

Beijing Agriculture Innovation Consortium

earmarked fund for CARS

Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3