Integrated Analysis of the Transcriptome and Metabolome Reveals Genes Involved in the Synthesis of Terpenoids in Rhododendron fortunei Lindl.

Author:

Qin Yi1,Yang Guoxia1,Li Dongbin2,Zhang Danyidie1,Chen Zhihui3,Yang Zhongyi1,Yang Kaitai1,Xie Xiaohong1,Wu Yueyan1

Affiliation:

1. College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China

2. Ningbo Forest Farm, Ningbo 315100, China

3. College of Life Sciences, Dundee University, Dundee DD1 4HN, UK

Abstract

Rhododendron, a globally popular ornamental flower, is nevertheless limited in our understanding of the mechanisms underlying its fragrance formation. Notably, terpenoids are the most prevalent volatile metabolite produced by plants. In this study, gas chromatography–mass spectrometry (GC–MS), liquid chromatography–mass spectrometry (LC–MS) and transcriptomics sequencing were conducted to analyze the synthesis mechanisms of terpenoid fragrance compounds of petals in fragrant R. fortunei Lindl. (YJ) and non-fragrant R. “Nova Zembla” (NW). The results identified that (-)-myrtenol, linalool, pinene, myrtenyl acetate, and terpineol were key floral aroma substances in YJ. Furthermore, an analysis of KEGG enrichment and differentially expressed genes (DEGs) revealed that the bud and decay stages exhibited the highest number of enriched DEGs among different aroma types, indicating these as critical stages for the synthesis of terpenoid floral compounds. In this study, a structural gene, denoted as RfFDPS, was identified as a negative regulatory gene for monoterpene accumulation and a positive regulatory gene for sesquiterpene accumulation in YJ. Utilizing subcellular localization technology, we determined that RfFDPS proteins are located in the cytoplasm. A functional analysis through transient expression and gene silencing of RfFDPS demonstrated its ability to regulate the accumulation of monoterpenes and sesquiterpenes. The overexpression of RfFDPS led to an increase in the expression of structural genes related to terpenoid synthesis, resulting in a decrease in monoterpenes and an increase in sesquiterpenes. Conversely, gene silencing had the opposite effect. In conclusion, RfFDPS plays a pivotal role in the synthesis and release of terpenoid volatile compounds in YJ petals, laying a solid theoretical foundation for the cultivation and enhancement of aromatic R. species.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3