The Growth and Tuber Yield of Potatoes (Solanum tuberosum L.) under Varying LED Light Spectrums in Controlled Greenhouse Conditions

Author:

Rahman Md Hafizur1ORCID,Islam Md. Jahirul2ORCID,Mumu Umma Habiba1,Ryu Byeong-Ryeol1ORCID,Lim Jung-Dae1ORCID,Azad Md Obyedul Kalam3ORCID,Cheong Eun Ju4ORCID,Lim Young-Seok15ORCID

Affiliation:

1. Department of Bio-Health Convergence, College of Bio-Medical Science, Kangwon National University, Chuncheon 24341, Republic of Korea

2. Crops Division, Bangladesh Agricultural Research Council (BARC), Farmgate, Dhaka 1215, Bangladesh

3. Department of Chemistry and Biochemistry, Food and Dairy Innovation Center, Boise State University, Boise, ID 83725, USA

4. College of Forest and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea

5. LYS Potato Research Institute, College of Bio-Medical Science Building A 303, Kangwon National University, Chuncheon 24341, Republic of Korea

Abstract

Plant growing using light-emitting diodes (LEDs) in a controlled environment is a revolutionary and innovative idea, regardless of the external environmental disturbances. Studying the growth and tuber yield of potatoes (Solanum tuberosum L.) in an LED-based plant factory system is a relatively innovative concept. The current study was conducted in a plant factory to evaluate the effects of different LED spectral compositions on potato tuberization. Potato tuberization was analyzed under six different LED light spectral combinations with irradiances of 300 mol m−2 s−1, with natural light considered the control treatment. The findings stated that the L2 treatment (red70 + blue20 + white10) increased the plant height, branch number, and biomass accumulation, while photosynthetic pigments and photosynthetic activity increased significantly in L5 (red60 + blue20 + green10 + white10). Higher gibberellic acid (GA3) content was recorded in L1 (red70 + blue30), whereas the tuber number and tuber fresh weight were recorded in L3 (red70 + blue20 + green10) and L7 (natural light), respectively. On the other hand, a higher number of smaller-sized tubers were observed in L5, while L2 and L4 (red70 + blue20 + far-red10) resulted in a higher number of medium-sized tubers. In conclusion, a high proportion of red and blue light, along with white and far-red light, increased the plant height, branch number, plant biomass, and production of small- and medium-sized tubers. On the other hand, the inclusion of green light with red and blue enhanced the chlorophyll content, photosynthesis, and leaf expansion, and promoted the production of smaller-sized tubers. Finally, with regard to tuberization, the treatment using L4 followed by L2 outperformed the other treatments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3