Effect of Phosphate-Deficiency Stress on the Biological Characteristics and Transcriptomics of Panax ginseng

Author:

Sun Hai1,Liang Hao1ORCID,Shao Cai1,Qian Jiaqi1,Zhu Jiapeng1,Zhang Guojia1,Lv Bochen1,Zhang Yayu12ORCID

Affiliation:

1. Institute of Special Animal and Plant Science of Chinese Academy of Agricultural Science, Changchun 130112, China

2. College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China

Abstract

The low availability of phosphorus has become a common problem worldwide. Phosphorus is essential for phenotypic morphology and ginsenoside synthesis. However, the effects of Pi stress on ginseng phenotype and ginsenoside synthesis remain unclear. Phenotypic analyses and transcriptomics revealed the phenotypic construction and regulation of differential genes involved in the physiological metabolism of ginseng under low-Pi stress. Root length and stem length were found to be significantly inhibited by phosphate-deficiency stress in the half-phosphate (HP) and no-phosphate (NP) treatment groups; however, the number of fibrous roots, which are regulated by phytohormones, was found to increase. In ginseng leaves, the indexes of physiological stress, superoxide anion (221.19 nmol/g) and malonaldehyde (MDA) (0.05 μmol/min/g), reached the maximum level. Moreover, chlorophyll fluorescence images and chlorophyll content further confirmed the inhibition of ginseng photosynthesis under low-Pi stress. A total of 579 and 210 differentially expressed genes (DEGs) were shared between NP and total phosphate (TP) and HP and TP, respectively, and only 64 common DEGs were found based on the two comparisons. These DEGs were mainly related to the synthesis of phosphate transporters (PHTs), phytohormones, and ginsenosides. According to KEGG analyses, four DEGs (Pg_s 0368.2, Pg_s3418.1, Pg_s5392.5 and Pg_s3342.1) affected acetyl-CoA production by regulating glycometabolism and tricarboxylic acid cycle (TCA). In addition, related genes, including those encoding 13 PHTs, 15 phytohormones, and 20 ginsenoside synthetases, were screened in ginseng roots under Pi-deficiency stress. These results indicate that changes in the ginseng phenotype and transcriptional regulation of DEGs are involved in the Pi-deficiency stress environment of ginseng, thereby providing new information regarding the development of ginseng for low-Pi tolerance.

Funder

China Agriculture Research System of MOF and MARA

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3