Affiliation:
1. Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
2. Department of Computer Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
3. Computer Science and Systems Department, University of Murcia, 30100 Murcia, Spain
Abstract
Tea is central to the culture and economy of the Middle East countries, especially in Iran. At some levels of society, it has become one of the main food items consumed by households. Bioactive compounds in tea, known for their antioxidant and anti-inflammatory properties, have proven to confer neuroprotective effects, potentially mitigating diseases such as Parkinson’s, Alzheimer’s, and depression. However, the popularity of black tea has also made it a target for fraud, including the mixing of genuine tea with foreign substitutes, expired batches, or lower quality leaves to boost profits. This paper presents a novel approach to identifying counterfeit Iranian black tea and quantifying adulteration with tea waste. We employed five deep learning classifiers—RegNetY, MobileNet V3, EfficientNet V2, ShuffleNet V2, and Swin V2T—to analyze tea samples categorized into four classes, ranging from pure tea to 100% waste. The classifiers, tested in both patched and non-patched formats, achieved high accuracy, with the patched MobileNet V3 model reaching an accuracy of 95% and the non-patched EfficientNet V2 model achieving 90.6%. These results demonstrate the potential of image processing and deep learning techniques in combating tea fraud and ensuring product integrity in the tea industry.
Funder
Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia