Behind the Loss of Salinity Resistance during Domestication: Alternative Eco-Physiological Strategies Are Revealed in Tomato Clade

Author:

Pompeiano Antonio12ORCID,Moles Tommaso Michele1ORCID,Viscomi Viviana1ORCID,Scartazza Andrea34ORCID,Huarancca Reyes Thais1ORCID,Guglielminetti Lorenzo12

Affiliation:

1. Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy

2. Centre of Agro-Ecological Research “Enrico Avanzi” (CiRAA), 56122 Pisa, Italy

3. Research Institute on Terrestrial Ecosystems, National Research Council, 56124 Pisa, Italy

4. National Biodiversity Future Center (NBFC), 90133 Palermo, Italy

Abstract

Salinity stress impairs growth and physiological performance in tomato, which is one of the most economically important vegetables and is widely cultivated in arid and semi-arid areas of the world. Plant landraces, which are heterogeneous, local adaptations of domesticated species, offer a unique opportunity to valorize available germplasm, underpinning the productivity, resilience, and adaptive capacity of staple crops in vulnerable environments. Here, we investigated the response of fully mature tomato plants from a commercial variety, an ancestral wild relative, and a landrace under short-term salinity exposure, as well as their ability to recover upon cessation of stress. The heterogeneous panel evaluated in this study revealed different adaptative strategies to cope the stress. Our data highlighted the ability of the tomato clade to handle low and intermediate salinity stress for short-term exposure time, as well as its capacity to recover after the cessation of stress, although inter- and intraspecific variations in morphological and physiological responses to salinity were observed. Overall, the landrace and the wild type performed similarly to control conditions under low salinity, demonstrating an improved ability to maintain ionic balance. In contrast, the commercial genotype showed susceptibility and severe symptoms even under low salinity, with pronounced reductions in K+/Na+ ratio, PSII photochemical efficiency, and photosynthetic pigments. This research confirmed that improved salt tolerant genotypes can lead to substantial, positive impacts on horticultural production. While the salt tolerance mechanism of domesticated tomato was efficient under mild stress conditions, it failed at higher salinity levels.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3