Jasmonates Play an Important Role in Differential Accumulation of Key Oolong Tea Aromas in Two Tea Varieties (Camellia sinensis)

Author:

Li Xin-Lei1ORCID,Deng Hui-Li2,Zheng Yu-Cheng3,Kong Xiang-Rui1,Zhong Qiu-Sheng1,You Xiao-Mei1,Shan Rui-Yang1,Lin Zheng-He1ORCID,Chen Zhi-Hui1,Chen Chang-Song14

Affiliation:

1. Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China

2. Research Office Department, Minjiang Teachers College, Fuzhou 350108, China

3. College of Tea and Food Science, Wuyi University, Wuyishan 354300, China

4. Fujian Branch of National Center for Tea Improvement, Fuzhou 350013, China

Abstract

Aroma is an important factor in the measurement of the quality and market value of oolong tea. However, it is hard to develop an oolong tea with good aroma quality using unsuitable tea varieties. To explore the key factors of tea varieties in the formation of oolong tea aromas, the fresh leaves of the Chungui variety (CG, suitable for oolong tea, Camellia sinensis (L.) O. Kuntze) and the Fuyun No. 6 variety (F6, unsuitable for oolong tea, Camellia sinensis (L.) O. Kuntze) were harvested and treated by withering and mechanical stress in order. Then, aroma, transcriptome, and jasmonate (JA) contents, and weighted gene co-expression network analysis (WGCNA), of samples were investigated. The contents of characteristic oolong tea aromas, including indole, (E)-β-ocimene, (E)-nerolidol, α-farnesene, and jasmine lactone, were all accumulated in much higher quantities in the CG variety after withering and mechanical stress. Accordingly, the coding genes of aroma formation synthases TSB2, OCS, NES, AFS, and LOX1, and related genes in MVA, MEP, and ALA pathways, were all much more highly activated. These differential reactions are mainly caused by the higher accumulation of jasmonates, especially methyl jasmonate, a type of important plant signal chemical, in CG after mechanical stress. WGCNA analysis indicated 34 different transcription factors from different families are predicted to be involved in this jasmonate-responsive reaction.

Funder

Earmarked Fund for China Agriculture Research System

Agricultural High-quality Development Surpasses the “5511” Collaborative Innovation Project

Scientific and Technological Innovation Team of Fujian Academy of Agricultural Sciences

Fujian Natural Science Foundation Project

Basic Scientific Research Projects of Fujian Provincial Public Welfare Research Institutes

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3