Comparative Growth and Bacoside Production in Diploid and Tetraploid Bacopa monnieri (L.) Wettst. Cultivated Indoors via Hydroponic and Soil Culture Systems

Author:

Inthima Phithak12ORCID,Supaibulwatana Kanyaratt3ORCID

Affiliation:

1. Plant Tissue Culture Research Unit, Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

2. Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand

3. Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand

Abstract

Bacopa monnieri, a cognitive-enhancing herb crucial in health supplements, faces quality variations and contamination by toxic substances in conventional field cultivation, which hinders industrial use. Here, indoor cultivation of diploid (2x) and tetraploid (4x) B. monnieri using hydroponic and soil systems was studied. Soil cultivation promoted longer shoot lengths but resulted in lower biomass and chlorophyll contents compared to hydroponic cultivation. Conversely, soil cultivation significantly elevated total phenolics, total triterpenoids, bacoside A3, and bacopaside X contents in both lines, showing 1.7- to 3.3-fold increases over hydroponic cultivation. Furthermore, 4x plants grown in soil had higher bacopaside II and total bacoside contents than hydroponically grown plants, with 2- and 1.5-fold increases, respectively. Yet, no significant differences were observed in growth and pigment between 2x and 4x lines under the same system. Similarly, no significant differences in bioactive compound productions were found between 2x and 4x hydroponically grown plants. However, in soil, 4x plants exhibited higher total phenolic content, bacopaside II, and total bacoside contents compared to 2x plants. Interestingly, 2x plants grown in soil were the top performers for bacoside production per plant. These findings optimize cultivation practices to meet industry demands, warranting further research into large-scale production techniques.

Funder

Office of the Permanent Secretary, Ministry of Higher Education, Science, Research, and Innovation, Thailand

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3