The Effect of Salinity and Drought on the Essential Oil Yield and Quality of Various Plant Species of the Lamiaceae Family (Mentha spicata L., Origanum dictamnus L., Origanum onites L.)

Author:

Stefanakis Michalis K.12ORCID,Giannakoula Anastasia E.1,Ouzounidou Georgia3,Papaioannou Charikleia4ORCID,Lianopoulou Vaia1,Philotheou-Panou Eleni1

Affiliation:

1. Laboratory of Plant Physiology, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece

2. Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece

3. Hellenic Agricultural Organization-Demeter, Institute of Food Technology, 1 S. Venizelou Str., 14123 Lycovrissi, Greece

4. Laboratory of Genetics, Department of Biology, University of Patras, 26504 Patras, Greece

Abstract

Mentha spicata L., Origanum dictamnus L., and Origanum onites L. are aromatic plants that produce very important essential oils. They are considered model plants with beneficial health properties due to their antioxidant content. Enhancing the yield while maintaining the quality of essential oil is of significant commercial importance. Salinization and drought cause various effects on the yield and quality of the bioactive constituents in essential oil. By assessing the response of these plants and their secondary metabolites accumulation to different salt stress and irrigation levels, this study aims to gain insights into how plants adapt to and cope with salinity and drought. A pot experiment was conducted in the spring of 2020 to assess the effect of salinity and drought stress on the growth and essential oils content of the three aromatic plant species mentioned above. The soil mixture used was perlite and peat in a ratio of 1:1:6, while four salinity treatments (25, 50, 100, and 150 mΜ NaCl) and two levels of irrigation were applied (100% and 50%). Salinity significantly affects total chlorophyll concentration especially in higher concentrations (100 and 150 mM) in M. spicata plants, especially under 50% soil water irrigation. Under the same conditions, M. spicata contained the higher proline concentration, which was significantly greater than that in O. dictamnus and O. onites. Similar variations of malondialdehyde and hydrogen hyperoxide were revealed among the three species, with significantly higher values in M. spicata when subjected to both excess salinity and drought conditions. The major compounds identified in M. spicata were carvone, in O. dictamnus carvacrol, and p-cymene and in O. onites carvacrol. It is important to highlight that O. onites had the highest concentration of essential oil, and that the concentration increased with the increase of NaCl. This suggests that the presence of NaCl in the soil may have a stimulating effect on the production of essential oil in O. onites. However, it is plausible that the stress caused by NaCl triggers a physiological response in O. onites, leading to increased production of essential oil. This could be a protective mechanism to enhance the plant’s resistance to the stressor. Overall, O. onites and O. dictamnus appeared to be more resistant to these stress conditions than M. spicata, since they maintained their growth and essential oil quality indicators at higher levels. These two species possess mechanisms that prevent or minimize lipid peroxidation, thus protecting their cell membranes and maintaining their ultrastructure integrity.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3