Affiliation:
1. Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
2. The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
3. Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
Abstract
Salinity is a major social, economic, and environmental menace in climates with low rainfall and high evapotranspiration, and it influences plant growth and causes restriction to crop production in the world. Additionally, under salinity stress, numerous physiological processes such as photosynthesis, biomass accumulation, and photosynthate transfer are also harshly lessened, and it also limits the absorption of adequate water by plants and leads to a dimension in plant water status. Therefore, the current study was conducted to investigate the soil application of humic acid (HA) at 0, 0.5, 1 and 2 kg/tree alone or in combination with the foliar spraying of 0 mg ZnO2 + 0 mg TiO2, 200 mg ZnO2 + 60 mg TiO2 and/or 300 mg ZnO2 + 80 mg TiO2 through the two successive seasons 2022 and 2023. The results demonstrated that the use of HA alone or in combination with the spraying of TiO2 and ZnO2 greatly improved the leaf chlorophyll, flower number, fruit set percentages, fruit yields in kg or in ton per hectare, fruit weight, fruit size, and fruit firmness. Additionally, the same used treatments greatly improved the fruit content from TSS and oil percentages and also the leaf mineral content from N, P and K, while they minimized the fruit drop percentage and fruit moisture content as compared to control. The most positive influence was observed with the soil implementation of 2 kg HA combined with 300 mg ZnO2 + 80 mg TiO2 in the two experimental seasons.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献