Physiological Studies and Transcriptomic Analysis Reveal the Mechanism of Saline-Alkali Stress Resistance of Malus sieversii f. niedzwetzkyan

Author:

Jiang Lepu1,Yang Yan1,Zhou Zhengli1,Chen Xuesen2

Affiliation:

1. Key Laboratory of Biological Resources Protection and Utilization Corps of Tarim Basin, Tarim University, Alar 843300, China

2. College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, Tai’an 271018, China

Abstract

Malus sieversii f. niedzwetzkyan, a wild species capable of growing on saline-alkali soil in Xinjiang, is the most promising horticultural crop for improving the saline-alkali wasteland. However, the tolerance of M. niedzwetzkyan to saline-alkali stress and the underlying molecular mechanisms remains largely unknown. Here, we conducted a hydroponic experiment in which M. niedzwetzkyana and M. domestica “Royal Gala” seedlings were subjected to 150 mM saline-alkali stress. Physiological data showed that M. niedzwetzkyana had a strong ROS scavenging ability and ion transport ability, and its saline-alkali resistance was higher than that of M. “Royal Gala”. Saline-alkali stress also promoted the synthesis of anthocyanins in M. niedzwetzkyana. Transcriptome analysis was conducted on the leaves and roots of M. niedzwetzkyana at different time points under saline-alkali stress (0 h, 6 h, and 12 h). Transcriptome analysis revealed that saline stress down-regulated most genes involved in the anthocyanin flavonoid synthesis pathway. Transcription levels of genes involved in antioxidant enzyme activity and ion transport were altered. We identified hub genes related to superoxide dismutase as well as Na+ and K+ transport using weighted gene co-expression network analysis. This study elucidated, for the first time at the molecular level, the saline-alkali tolerance of M. niedzwetzkyana, including the complex changes in pathways that regulate reactive oxygen species homeostasis, ion uptake, and anthocyanoside synthesis under saline-alkali stress conditions. This research provides an important genetic resource for identifying genes involved in responses to saline-alkali stress.

Funder

Corps Key Areas of Science and Technology Research projects

Key Research and Development Programs of Shandong Provence

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3