Occurrence of Wetness on the Fruit Surface Modeled Using Spatio-Temporal Temperature Data from Sweet Cherry Tree Canopies

Author:

Tapia-Zapata Nicolas1,Winkler Andreas2ORCID,Zude-Sasse Manuela1ORCID

Affiliation:

1. Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany

2. Teaching and Research Institute for Horticulture and Arboristics, Horticultural Research Station Muencheberg, Eberswalder Str. 84 i, 15374 Muencheberg, Germany

Abstract

Typically, fruit cracking in sweet cherry is associated with the occurrence of free water at the fruit surface level due to direct (rain and fog) and indirect (cold exposure and dew) mechanisms. Recent advances in close range remote sensing have enabled the monitoring of the temperature distribution with high spatial resolution based on light detection and ranging (LiDAR) and thermal imaging. The fusion of LiDAR-derived geometric 3D point clouds and merged thermal data provides spatially resolved temperature data at the fruit level as LiDAR 4D point clouds. This paper aimed to investigate the thermal behavior of sweet cherry canopies using this new method with emphasis on the surface temperature of fruit around the dew point. Sweet cherry trees were stored in a cold chamber (6 °C) and subsequently scanned at different time intervals at room temperature. A total of 62 sweet cherry LiDAR 4D point clouds were identified. The estimated temperature distribution was validated by means of manual reference readings (n = 40), where average R2 values of 0.70 and 0.94 were found for ideal and real scenarios, respectively. The canopy density was estimated using the ratio of the number of LiDAR points of fruit related to the canopy. The occurrence of wetness on the surface of sweet cherry was visually assessed and compared to an estimated dew point (Ydew) index. At mean Ydew of 1.17, no wetness was observed on the fruit surface. The canopy density ratio had a marginal impact on the thermal kinetics and the occurrence of wetness on the surface of sweet cherry in the slender spindle tree architecture. The modelling of fruit surface wetness based on estimated fruit temperature distribution can support ecophysiological studies on tree architectures considering resilience against climate change and in studies on physiological disorders of fruit.

Funder

European Horizon2020 RIA program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3