Plant Biostimulants Enhance Bud Break in Vitis vinifera Crimson Seedless Using Combination Treatments

Author:

Venter Nicole C.1ORCID,Avenant Eunice1,Kotze Theunis N.2,Hills Paul N.3ORCID,Moore John P.1ORCID

Affiliation:

1. South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa

2. Department of Agronomy, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa

3. Institute for Plant Biotechnology, Department of Genetics, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa

Abstract

The rest-breaking agent, hydrogen cyanamide (HC), can substitute insufficient chill unit accumulation in Vitis vinifera and induce uniform bud-break; however, due to its toxicity it is being banned. In South Africa, red seedless grapes, including V. vinifera Crimson Seedless (CS), are the largest table grape export group; therefore, replacing HC in V. vinifera CS is crucial. This study aimed to confirm the molecular triggers induced by HC and assess the bud-break-enhancing abilities of commercial plant biostimulants. Forced bud-break assay experiments using V. vinifera CS single-node cuttings and a small-scale field trial were performed. Results demonstrated that increased chill unit accumulation (CUA) reduced HC efficacy. Bud-break started between 10 and 20 days after treatment, irrespective of final CUA. The small-scale field trial found that HC 3% and biostimulants were similar to the negative control. The treatment of dormant grapevine compound buds with nitric oxide (NO), hydrogen peroxide (H2O2), and hypoxia trigger dormancy release to a certain extent, supporting the molecular models proposed for HC action. NO, H2O2, and hypoxia, in combination with PBs, may potentially replace HC; however, this needs to be confirmed in future experiments.

Funder

Winfield United

Stellenbosch University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3