Layout of Suspension-Type Small-Sized Dehumidifiers Affects Humidity Variability and Energy Consumption in Greenhouses

Author:

Gulandaz Md Ashrafuzzaman1ORCID,Kabir Md Sazzadul1,Kabir Md Shaha Nur2,Ali Mohammod3ORCID,Reza Md Nasim13ORCID,Haque Md Asrakul3,Jang Geun-Hyeok4,Chung Sun-Ok13ORCID

Affiliation:

1. Department of Smart Agricultural Systems, Graduate School, Chungnam National University, Daejeon 34134, Republic of Korea

2. Department of Agricultural and Industrial Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh

3. Department of Agricultural Machinery Engineering, Graduate School, Chungnam National University, Daejeon 34134, Republic of Korea

4. Shinan Green-Tech Co., Ltd., Suncheon 58027, Republic of Korea

Abstract

In greenhouse management, maintaining optimal humidity is essential for promoting plant growth, including photosynthesis, and preventing diseases and pests. Addressing spatial variability requires sensor-based monitoring for informed decisions on humidification systems, particularly for small, and suspension-type dehumidifiers. This study aims to assess the impact of various layouts of small-sized suspension-type dehumidifiers on vertical, spatial, and temporal humidity variability, along with energy consumption in a greenhouse. During experiments in a 648 m³ (18 m × 6 m × 6 m) plastic greenhouse, dehumidifiers were placed at four different layouts: one at the center (Layout 1), one on each side (Layout 2), two units at the center facing opposite directions (Layout 3), and two units on one side facing the center (Layout 4). Temperature and humidity (TH) sensors were connected to a microcontroller, facilitating wireless data acquisition, storage, and remote monitoring. The actuator was controlled through a relay module, and current sensors monitored power consumption. Spatial interpolation and mapping were employed using mapping software. These layouts reduced humidity from 89.30% to 51.10%, with Layout 2 displaying the most consistent humidity distribution. Water removal efficiency varied among layouts, with Layout 2 exhibiting the highest (61.15 L) and overall performance of 50%, while Layouts 1, 3, and 4 exhibited lower efficiencies of 40%, 44%, and 49%, respectively. Power consumption ranged from 0.506 to 0.528 kW for the dehumidifier and 0.242 to 0.264 kW for the fan. The findings highlighted that positioning the dehumidifier on both sides, facing towards the center (Layout 2), resulted in the most uniform humidity control within the greenhouse. The optimal layout of small suspension-type dehumidifiers in greenhouses would significantly improve humidity control, promoting plant growth.

Funder

Chungnam National University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3