Understanding the Regular Biological Mechanism of Susceptibility of Tomato Plants to Low Incidences of Blossom-End Rot

Author:

Abdelkader Mostafa1ORCID,Elkhawaga Fathia A.2,Suliman Ahmed A.3ORCID,Puchkov Mikhail4ORCID,Kuranova Kristina Nikolaevna4,Mahmoud Mohamed H.5ORCID,Abdelkader Mohamed F. M.6ORCID

Affiliation:

1. Horticulture Department, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt

2. Botany Department, National Research Centre, Giza 12622, Egypt

3. Agricultural and Biological Research Institute, National Research Center, Giza 12622, Egypt

4. Laboratory of Selection and Seed Production, Astrakhan State University, 414056 Astrakhan, Russia

5. Department of Biochemistry, College of Science, King Saud University, Riyadh 12372, Saudi Arabia

6. Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh 12372, Saudi Arabia

Abstract

Blossom-end rot (BER) is a physiological disorder caused by calcium deficiency, often paired with moisture stress and irregular traditional watering practices. To understand the biological mechanism affecting the incidence of BER, different tomato genotypes were cultivated in sandy soil and were traditionally irrigated. Nine tomato genotypes were investigated to assess their susceptibility to BER, and the incidence rate varied from 7.1% in “Voskhod” to 57.6% in “Majnat” genotypes. This study also comprehensively analyzed various physiological and biochemical parameters to elucidate their correlation with BER incidence in tomato plants. Our findings revealed a range of parameters positively correlated with BER incidence, including the relative water content of roots, the number of fruits per plant, vitamin C content, and potassium content. Parameters related to fruit quality, such as titratable acidity, peroxidase content, and firmness degree, also showed positive correlations with BER incidence. Conversely, parameters such as total yield per hectare, chlorophyll content, average plant height, and calcium content demonstrated strong negative correlations with BER incidence, suggesting potential protective effects against this disorder. This study highlights that genotypes with higher marketable yields, such as ‘Voskhod’ (65 tons/ha), showed lower BER incidence, underscoring the importance of selecting the appropriate genotype in improving yield and reducing blossom-end rot in tomato fields. Conversely, cultivars with high BER sensitivity, such as ‘Chelnok’ (26.3 tons/ha), require specially designed cultivation management to avoid production declines.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3